Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The aim of this study was to evaluate the hearing status of call centre operators in relation to their noise exposure. Conventional pure-tone audiometry and extended high-frequency audiometry were performed in 49 workers, aged 22–47 years (mean ± SD: 32.0 ± 6.0 years), working in call centre from 1.0 to 16.5 years (mean ± SD: 4.7 ± 2.9 years). Questionnaire inquiry aimed at collecting personal data, the information on ommunication headset usage habits, self-assessment of hearing ability and identification of risk factors for noise-induced hearing loss were also carried out. Sound pressure levels generated by the communication headset were determined using the artificial ear technique specified in CSA Z107.56-13 (2013) standard. The background noise prevailing in offices was also measured according to PN-N-01307 (1994) and PN-EN ISO 9612 (2011). Personal daily noise exposure levels in call centre operators varied from 66 to 86 dB (10–90th percentile). About half of the study subjects had normal hearing in the standard frequencies (from 250 to 8000 Hz) in both ears, while only 27.1% in the extended high-frequencies (9–16 kHz). Moreover, both high-frequency and speech-frequency hearing losses were observed in less than 10% of audiograms, while the extended high-frequency threshold shift was noted in 37.1% of analysed ears. The hearing threshold levels of call centre operators in the frequency of 0.25–11.2 kHz were higher (worse) than the expected median values for equivalent (due to age and gender) highly screened population specified in ISO 7029 (2017). Furthermore, they were also higher than predicted for 500–4000 Hz according to ISO 1999 (2013) based on the results of noise exposure evaluation.
Go to article

Abstract

Polybrominated diphenyl ethers (PBDEs) levels in environmental media have increased over the last 20-25 years in the world. In aquatic environments PBDEs were found to be accumulated along food chain and Endocrine disruptors toxicity. In this study PBDEs were investigated in sediment and fish tissues from Lake Chaohu in central eastern China. There were 10 PBDEs congeners detected out of all 41 PBDEs. BDE-47 was of the highest with 5.17 ng/g in sediment and 58.47 ng/g in fish. PBDEs were evenly distributed across the surface sediment in the whole lake. It implied that the main source of PBDEs may not be an inflow river like Nanfei. Tissue distribution patterns of PBDEs in four fish species were in the order of BDE-47 > BDE-99 > BDE-100 > BDE-66 > BDE-138 > BDE-183 > BDE-154 > BDE-153. Octa- and deca-BDEs were below the detection limit. The concentrations of all PBDE congeners were higher in gills, livers, and kidneys than those in muscles and adipose tissue. Furthermore, PBDEs in different tissues had some different distribution patterns with fish size. Those discrepancies appeared to be correlated with the PBDEs pollution fluxes varying with the change of the year and their metabolism divergences in fish tissues.
Go to article

This page uses 'cookies'. Learn more