Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

In literature as well as in the university debate, we can observe the increase of interest regarding converting agricultural residues into energy. Furthermore, the energy and climate policies have encouraged the development of biogas plants for energy production. One of the most significant reasons of this escalation is that this technology may be both convenient and beneficial. The produced biogas is not only supposed to cover the energy demand like heat and electricity, the resulting digestate has the prospect of a beneficial fertilizer and can thereby influence the energy management plans. This technology is widely introduced to countries, which have large income from agriculture. Not only does this reduce the use of industrial fertilizers, but also finds use for agricultural residues. One of the countries of this type is Vietnam, which is the fifth largest exporter of rice in the world. Over 55% of greenhouse gas emission in Vietnam comes from agriculture. Using innovative technologies such as biogas, may decrease this value in near future. It may also contribute to more sustainable agriculture by decreasing traditional fields burning after the harvesting period. The goal of this research paper is to estimate the possible production of biogas from rice straw to cover the energy demand of the rice mill. Four possible scenarios have been considered in this paper, the present situation and where electricity, energy or both were covered by biogas from agricultural residues. An attempt was made to answer the question whether the amount of biogas produced from agricultural residues is enough for both: electricity and energy supply, for the rice mill. If not, how much rice straw must be delivered from other sources, from which rice is not delivered to the rice mill. The base of the assumptions during the estimation of various values were statistics from FAO and other organizations, secondary sources and data from the existing rice mill in Hậu Mỹ Bắc B in Mekong delta in Vietnam.
Go to article

Abstract

This study involves the implementation of an economic order quantity (EOQ) model which is an inventory control method in a ceramic factory. Two different methods were applied for the calculation of EOQs. The first method is to determine EOQ values using a response surface method-based approach (RSM). The second method uses conventional EOQ calculations. To produce a ceramic product, 281 different and additive materials may be used. First, Pareto (ABC) analysis was performed to determine which of the materials have higher priority. Because of this analysis, the value of 21 items among 281 different materials and additives were compared to the ratio of the total product. The ratio was found to be 70.4% so calculations were made for 21 items. Usage value for every single item for the years 2011, 2012, 2013 and 2014, respectively, were obtained from the company records. Eight different demand forecasting methods were applied to find the amount of the demand in EOQ. As a result of forecasting, the EOQ of the items were calculated by establishing a model. Also, EOQ and RSM calculations for the items were made and both calculation results were compared to each other. Considering the obtained results, it is understood that RSM can be used in EOQ calculations rather than the conventional EOQ model. Also, there are big differences between the EOQ values which were implemented by the company and the values calculated. Because of this work, the RSM-based EOQ approach can be used to decide on the EOQ calculations as a way of improving the system performance.
Go to article

Abstract

A lot of interest has recently been put into the so-called ‘virtual cryptographic currencies’, commonly known as cryptocurrencies, along with its surrounding market. The blockchain technology that stands behind them is also becoming increasingly popular. From the perspective of maintaining energy security, an important issue is the process of mining individual cryptocurrencies, which is associated with very high energy consumption. This operation is usually related to the approval of new blocks in the blockchain network and attaching them to the chain. This process is carried out through performing complex mathematical operations by various devices, which in turn require high power and respectively consume a lot of energy. The impact of cryptocurrency miners on the power and energy demand level might gradually increase over time, therefore this issue shouldn’t be ignored. Comparing the above information in parallel with the growing need for providing demand side response (DSR) services in the Polish Power System, raises the question whether devices used for mining cryptocurrencies can be used for the purpose of balancing the power system. This paper presents an analysis of the possibility to provide the demand side response services by groups of cryptocurrency miners users. The analysis was carried out taking basic functional, technological and economical aspects of these devices’ operations into account.
Go to article

Abstract

In the over 150 years of hydrocarbon history, the year 2017 will be one of the many similar. However, it will be a breakthrough year for liquefied natural gas. In Asia, China grew to become the leader of import growth, becoming the second world importer, overtaking even South Korea and chasing Japan. The Panama Canal for LNG trade and the “Northern Passage” was opened, so that Russian LNG supplies appeared in Europe. The year 2017 was marked by a dramatic shortening of the length of long-term concluded contracts, their shorter tenure and reduction of volumes – that is, it was another period of market commoditization of this energy resource. The article describes the current state of LNG production and trade till 2018. It focuses on natural gas production in the United States, Qatar, Australia, Russia as countries that can produce and supply LNG to the European Union. The issue of prices and the contracts terms in 2017 was analyzed in detail. The authors stress that the market is currently characterized by an oversupply and will last at least until mid–2020. Novatek, Total – Yamal-LNG project leaders have put the condensing facility at 5.5 million tons into operation. The Christophe de Margerie oil tanker was the first commercial unit to cross the route to Norway and then further to the UK without icebreakers and set a new record on the North Sea Road. In 2017, the Russian company increased its share in the European gas market from 33.1 to 34.7%. In 2017, Russia and Norway exported record volumes of „tubular” – classic natural gas to Europe (and Turkey), 194 and 122 billion m3 respectively, which is 15 and 9 billion m3 more natural gas than in 2016. The thesis was put forward that Russia would not easily give up its sphere of influence and would do everything and use various mechanisms, not only on the market, that it would simply be more expensive and economically unprofitable than natural gas. It was also emphasized that the pressure of the technically possible and economically viable redirection to European terminals of methane carriers landed in the American LNG, results in Gazprom not having a choice but to adjust its prices. The Americans, but also any other supplier (Australia?) can simply do the same and this awareness alone is enough for Russian gas to be present in Europe at a good price.
Go to article

Abstract

In the academic community within Poland, there is an ongoing debate about the optimal strategies for a redesign of PhD programs; however, the views of PhD students in relation to contemporary doctoral study programs are not widely known. Therefore, in this article, we aim to answer the following questions: (1) what are the demands and the resources for doctoral studies at the Jagiellonian University (JU) as experienced by PhD students? (2) how are these demands and resources related to study burnout and engagement? To gain answers to these questions, we conducted an on-line opinion-based survey of doctoral students. As a result, 326 JU PhD students completed a questionnaire measuring 26 demands and 23 resources along with measures of study burnout and levels of engagement. The results revealed that the demands of doctoral studies at the JU (as declared by at least half of the respondents) are: the requirement to participate in classes that are perceived as an unproductive use of time, the lack of remuneration for tutoring courses with students, a lack of information about possible career paths subsequent to graduation, the use of PhD students as low-paid workers at the university, a lack of opportunities for financing their own research projects, and an inability to take up employment while studying for a doctoral degree. In terms of resources, at least half of the doctoral students pointed to: discounts on public transport and the provision of free-of-charge access to scientific journals. Analyzing both the frequency and strength of the relationships between resources/demands and burnout/engagement, we have identified four key problem areas: a lack of support from their supervisor, role ambiguity within University structures for PhD students, the conflict between paid work and doctoral studies, and the mandatory participation in classes as a student.
Go to article

This page uses 'cookies'. Learn more