Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Different chromosomal forms of Deschampsia antarctica Desv. (Poaceae), including diploids (2n=26), hypotriploid (2n=36–38) and a genotype with an occasional occurrence of B chromosome (2n=26+0-1B) that originated from southern marginal populations (Argentine Islands region, maritime Antarctic) were studied using molecular cytogenetic, morphometric and biochemical methods. FISH analysis revealed variations in the number of rDNA sites between the diploid and hypotriploid plants. The genome size varied among plants with a different chromosome number and was on average 10.88 pg/2C for diploids and 16.46 pg/2C for hypotriploid. The mean values of leaf length of plants grown in vitro varied within a range of 5.23–9.56 cm. The total phenolic content ranged from 51.10 to 105.40 mg/g, and the total flavonoid content ranged from 1.22 to 4.67 mg/g. The amount of phenolic compounds did not differ significantly between the genotypes, while a variation in the flavonoid content was observed for L59 and DAR12. The diploids did not differ significantly among each other in terms of the number of rDNA loci, but differed slightly in their genome size. The individuals of DAR12 carrying B chromosome were similar to other diploids in terms of their genome size, but statistically differed in leaf length. The hypotriploid had both a greater number of rDNA sites and a larger genome size. No statistical correlations were observed between the genome size and leaf length or genome size and accumulation of phenolic and flavonoid compounds. The results of this study suggest that D. antarctica plants from the southern edge of the range are characterised by the heterogeneity of the studied parameters.
Przejdź do artykułu

Abstrakt

Populations of Antarctic hairgrass Deschampsia antarctica Desv. from King George Island exhibit variation in many traits. The reason for that is not evident and could be addressed to variable environmental conditions. Obviously, phenotypic variation could be due to stable or temporal changes in expression pattern as the result of adaptation. Stable changes could be due to mutations or site DNA methylation variation that modified expression pattern. Recently, metAFLP approach was proposed to study such effects. A variant of methylation sensitive AFLP (Amplified Fragment Length Polymorphism), based on the isoschizomeric combinations Acc65 I/ Mse I and Kpn I/ Mse I was applied to analyze the sequence and site DNA methylation differences between two D. antarctica populations exhibiting morphological dissimilarities. Both DNA sequence mutations and site methylation pattern alternations were detected among and within analyzed populations. It is assumed that such changes might have originated as the response to environmental conditions that induced site methylation alternations leading to phenotypic variation of D. antarctica populations from South Shetland Islands.
Przejdź do artykułu

Abstrakt

The development of megasporocytes and the functional megaspore formation in Deschampsia antarctica were analyzed with the use of microscopic methods. A single archesporial cell was formed directly under the epidermis in the micropylar region of the ovule without producing a parietal cell. In successive stages of development, the meiocyte was transformed into a megaspore tetrad after meiosis. Most megaspores were arranged in a linear fashion, but some tetrads were T-shaped. Only one of the 60 analyzed ovules contained a cell in the direct proximity of the megasporocyte, which could be an aposporous initial. Most of the evaluated D. antarctica ovules featured monosporic embryo sacs of the Polygonum type. Approximately 30% of ovules contained numerous megaspores that were enlarged. The megaspores were located at chalazal and micropylar poles, and some ovules featured two megaspores - terminal and medial - in the chalazal region, or even three megaspores at the chalazal pole. In those cases, the micropylar megaspore was significantly smaller than the remaining megaspores, and it did not have the characteristic features of functional megaspores. Meiocytes and megaspores of D. antarctica contained polysaccharides that were detectable by PAS-reaction and aniline blue staining. Starch granules and cell walls of megasporocytes, megaspores and nucellar cells were PAS-positive. Fluorescent callose deposits were identified in the micropylar end of the megasporocytes. During meiosis and after its completion, thick callose deposits were also visible in the periclinal walls and in a small amount in the anticlinal walls of megaspores forming linear and T-shaped tetrads. Callose deposits fluorescence was not observed in the walls of the nucellar cells.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji