Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The removal of benzene (B) and toluene (T) from aqueous solution by multi walled, single walled, and hybrid carbon nanotubes (MWCNTs, SWCNTs, and HCNTs) was evaluated for a nanomaterial dose of 1 g/l, concentration of 10-100 mg/l, and pH 7. The equilibrium amount removed by SWCNTs (B: 9.98 mg/g and T: 9.96 mg/g) was higher than for MWCNTs and HCNTs. Toluene has a higher adsorption tendency on CNTs than benzene, which is related to the increasing water solubility and the decreasing molecular weight of the compounds. The SWCNTs performed better for B and T sorption than the MWCNTs and HCNTs. Isotherms study based on isofit program indicate that the Generalized Langmuir-Freundlich (GLF) isotherm expression provides the best fit for benzene sorption, and that Brunauer-Emmett-Teller (BET) isotherm is the best fit for toluene adsorption by SWCNT. SWCNTs are efficient B and T adsorbents and possess good potential applications to water and wastewater treatment and maintain water of high quality that could be used for cleaning up environmental pollution.
Go to article

Abstract

The granary weevil, Sitophilus granarius (L.), is one of the most important internal feeders of stored grain. Nanotechnology has become one of the most promising new approaches for pest control in recent years. In our screening program, laboratory trials were conducted to determine the effectiveness of silica nanoparticles (SNPs) and zinc nanoparticles (ZNPs) against the larval stage and adults of S. granarius on stored wheat. Nanoparticles of silica and zinc were synthesized through a solvothermal method. They were then used to prepare insecticidal solutions of different concentrations and tested on S. granarius. Silica nanoparticles (SNPs) were found to be highly effective against S. granarius causing 100% mortality after 2 weeks. ZNPs were moderately effective against this pest.
Go to article

This page uses 'cookies'. Learn more