Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11776
items per page: 25 50 75
Sort by:

Abstract

The proportional-integral-derivative (PID) controllers have experienced series of structural modifications and improvements. Example of such modifications are set-point weighting and fractional ordering. While the former is to achieve two-degree-of-freedom (2DOF) ability of set-point tracking and disturbance rejection, the latter is to ensure smooth control action. Therefore, this paper reviews various forms of PID controllers and provides a comparative analysis of 2DOF PID and 2DOF fractional order PID (FOPID) controllers. The paper also discusses the conversion of one PID form to another. For the comparative analysis of the various controllers, a class of unstable systems are considered. Simulation result shows that in most cases the conversion from one form to another does not significantly affect the performance of the system. It is also observed that the 2DOF controllers (2DOF PID and 2DOF FOPID) improved significantly the performance of the ordinary PID controllers.
Go to article

Abstract

A new method for computation of positive realizations of given transfer matrices of fractional linear continuous-time linear systems is proposed. Necessary and sufficient conditions for the existence of positive realizations of transfer matrices are given. A procedure for computation of the positive realizations is proposed and illustrated by examples.
Go to article

Abstract

The recently proposed q-rung orthopair fuzzy set (q-ROFS) characterized by a membership degree and a non-membership degree is powerful tool for handling uncertainty and vagueness. This paper proposes the concept of q-rung orthopair linguistic set (q-ROLS) by combining the linguistic term sets with q-ROFSs. Thereafter, we investigate multi-attribute group decision making (MAGDM) with q-rung orthopair linguistic information. To aggregate q-rung orthopair linguistic numbers ( q-ROLNs), we extend the Heronian mean (HM) to q-ROLSs and propose a family of q-rung orthopair linguistic Heronian mean operators, such as the q-rung orthopair linguistic Heronian mean (q-ROLHM) operator, the q-rung orthopair linguistic weighted Heronian mean (q-ROLWHM) operator, the q-rung orthopair linguistic geometric Heronian mean (q-ROLGHM) operator and the q-rung orthopair linguistic weighted geometric Heronian mean (q-ROLWGHM) operator. Some desirable properties and special cases of the proposed operators are discussed. Further, we develop a novel approach to MAGDM within q-rung orthopair linguistic context based on the proposed operators. A numerical instance is provided to demonstrate the effectiveness and superiorities of the proposed method.
Go to article

Abstract

An ideal observability subspace expression is stated for bilinear abstract system with bounded operator in Hilbert spaces. The case of finite dimentional space is also treated. However, it’s noticed that the state ideal observability can never be fulfilled within an infinite dimensional phase space in the case of scalar output. The case of bilinear discrete-time system with delays in observation is also described. To illustrate this work some examples are presented.
Go to article

Abstract

Abstract A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n ⩾ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n ⩾ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0.1448, L2 = 0.0328, L3 = 0 and L4 = −1.1294. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY= 3.1573. Next, an adaptive backstepping controller is designed to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global hyperchaos synchronization of the identical novel hyperjerk systems with three unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using SPICE is presented in detail to confirm the feasibility of the theoretical hyperjerk model.
Go to article

Abstract

Abstract The reachability of standard and fractional-order continuous-time systems with constant inputs is addressed. Positive and non-positive continuous-time linear systems are considered. Necessary and sufficient conditions for the existence of such constant inputs that steers the system from zero initial conditions to the given final state in desired time are derived and proved. As an example of such systems the electrical circuits with DC voltage sources are presented.
Go to article

Abstract

Abstract Fault input channels represent a major challenge for observer design for fault estimation. Most works in this field assume that faults enter in such a way that the transfer functions between these faults and a number of measured outputs are strictly positive real (SPR), that is, the observer matching condition is satisfied. This paper presents a systematic approach to adaptive observer design for joint estimation of the state and faults when the SPR requirement is not verified. The proposed method deals with a class of Lipschitz nonlinear systems subjected to piecewise constant multiplicative faults. The novelty of the proposed approach is that it uses a rank condition similar to the observer matching condition to construct the adaptation law used to obtain fault estimates. The problem of finding the adaptive observer matrices is formulated as a Linear Matrix Inequality (LMI) optimization problem. The proposed scheme is tested on the nonlinear model of a single link flexible joint robot system.
Go to article

Abstract

Abstract The minimum energy control problem for the descriptor discrete-time linear systems by the use of Weierstrass-Kronecker decomposition is formulated and solved. Necessary and sufficient conditions for the reachability of descriptor discrete-time linear systems are given. A procedure for computation of optimal input and a minimal value of the performance index is proposed and illustrated by a numerical example.
Go to article

Abstract

Abstract The conditions for positivity and stability of a class of fractional nonlinear continuous-time systems are established. It is assumed that the nonlinear vector function is continuous, satisfies the Lipschitz condition and the linear part is described by a Metzler matrix. The stability conditions are established by the use of an extension of the Lyapunov method to fractional positive nonlinear systems.
Go to article

Abstract

Abstract First, this paper announces a seven-term novel 3-D conservative chaotic system with four quadratic nonlinearities. The conservative chaotic systems are characterized by the important property that they are volume conserving. The phase portraits of the novel conservative chaotic system are displayed and the mathematical properties are discussed. An important property of the proposed novel chaotic system is that it has no equilibrium point. Hence, it displays hidden chaotic attractors. The Lyapunov exponents of the novel conservative chaotic system are obtained as L1 = 0.0395,L2 = 0 and L3 = −0.0395. The Kaplan-Yorke dimension of the novel conservative chaotic system is DKY =3. Next, an adaptive controller is designed to globally stabilize the novel conservative chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to achieve global chaos synchronization of the identical conservative chaotic systems with unknown parameters. MATLAB simulations have been depicted to illustrate the phase portraits of the novel conservative chaotic system and also the adaptive control results.
Go to article

Abstract

Abstract A new formulation of the minimum energy control problem for the positive 2D continuous-discrete linear systems with bounded inputs is proposed. Necessary and sufficient conditions for the reachability of the systems are established. Conditions for the existence of the solution to the minimum energy control problem and a procedure for computation of an input minimizing the given performance index are given. Effectiveness of the procedure is demonstrated on numerical example.
Go to article

This page uses 'cookies'. Learn more