Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 169
items per page: 25 50 75
Sort by:

Abstract

This paper discusses the joining of AZ91 magnesium alloy with AlSi17 aluminium alloy by compound casting. Molten AZ91 was cast at 650oC onto a solid AlSi17 insert placed in a steel mould under normal atmospheric conditions. Before casting, the mould with the insert inside was heated up to about 370oC. The bonding zone forming between the two alloys because of diffusion had a multiphase structure and a thickness of about 200 µm. The microstructure and composition of the bonding zone were analysed using optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results indicate that the bonding zone adjacent to the AlSi17 alloy was composed of an Al3Mg2 intermetallic phase with not fully consumed primary Si particles, surrounded by a rim of an Mg2Si intermetallic phase and fine Mg2Si particles. The bonding zone near the AZ91 alloy was composed of a eutectic (an Mg17Al12 intermetallic phase and a solid solution of Al and Si in Mg). It was also found that the compound casting process slightly affected the AZ91alloy microstructure; a thin layer adjacent to the bonding zone of the alloy was enriched with aluminium.
Go to article

Abstract

The paper presents the results of the crystallization process of silumin by the TDA thermographic method and the results of the cast microstructure obtained in the sampler ATD-10, that was cooling down in ambient air. The study was conducted for silumins AlSi8 and AlSi11 unmodified. The work demonstrated that the use of thermal imaging camera allows for the measurement and recording the solidification process of silumin. Thermal curve was registered with the infrared camera and derivative curve that was calculated on the base of thermal curve have both a very similar shape to adequate them TDA curves obtained from measurements using a thermocouple. Test results by TDA thermographic method enable quantitative analysis of the kinetics of the cooling and solidification process of hypoand neareutectic silumins.
Go to article

Abstract

The work is a continuation of research on the use of water mist cooling in order to increase efficiency of die-casting aluminum alloys using multipoint water mist cooling system. The paper presents results of investigation on crystallization process and microstructure of synthetic hypereutectic AlSi20 alloy. Casts were made in permanent mold cooled a with water mist stream. The study was conducted for unmodified AlSi20 alloy and a modified one with phosphorus, titanium and boron on the research station allowing sequential multipoint cooling using a dedicated program of computer control. The study demonstrated that the use of mold cooled with water mist stream and solution heat treatment allows in wide range for the formation of the microstructure of hypereutectic silumins. It leads to the growth of microstructure refinement and spheroidizing of phases in the casting.
Go to article

Abstract

The article presents the investigation results of the crystallization (performed by means of the TDA method) and the microstructure of complex aluminium bronzes with the content of 6% Al, 4% Fe and 4% Ni, as well as Si additions in the scope of 1–2% and Cr additions in the scope of 0.1–0.3%, which have not been simultaneously applied before. For the examined bronze, the following tests were performed: hardness HB, impact strength (KU2). For bronze CuAl6Fe4Ni4Si2Cr0.3, characterizing in the highest hardness, wear tests were conducted with dry friction and the dry friction coefficient. The investigations carried out by means of the X-ray phase analysis demonstrated the following phases in the microstructure of this bronze: αCu, γ2 and complex intermetallic phases based on iron silicide type Fe3Si (M3Si M={Fe,Cr,…}). Compared to the normalized aluminium bronzes (μ=0.18–0.23), the examined bronze characterizes in relatively low wear and lower friction coefficient during dry friction (μ=0.147±0.016).
Go to article

Abstract

Cast high-manganese Hadfield steel is commonly used for machine components operating under dynamic load conditions. Their high fracture toughness and abrasive wear resistance is the result of an austenitic structure, which - while being ductile - at the same time tends to surface harden under the effect of cold work. Absence of dynamic loads (e.g. in the case of sand abrasion) causes rapid and premature wear of parts. In order to improve the abrasive wear resistance of cast high-manganese steel for operation under the conditions free from dynamic loads, primary titanium carbides are produced in this cast steel during melting process to obtain in castings, after melt solidification, the microstructure consisting of an austenitic matrix and primary carbides uniformly distributed therein. After heat treatment, the microhardness of the austenitic matrix of such cast steel is up to 580 μHV20 and the resulting carbides may reach even 4000 μHV20. The impact strength of this cast steel varies from 57 to 129 and it decreases with titanium content. Compared to common cast Hadfield steel, the abrasive wear resistance determined in Miller test is at least twice as high for the 0.4% Ti alloy and continues growing with titanium content.
Go to article

Abstract

Fe - 4,25% C alloy was directionally solidified with a constant temperature gradient of G = 33,5 K/mm and growth rate of v = 83,3 μm/s (300 mm/h) using a vacuum Bridgman-type crystal growing facility with liquid metal cooling technique. To reveal more detailed microstructure, the deep etching was made. This was obtained in the process of electrolytic dissolution. The microstructure of the sample was examined on the longitudinal and transverse sections using an Optical Microscope and Scanning Electron Microscope. Using the Electron Backscattered Diffraction technique, phase map and analysis of phase were made. In this paper the analysis of Fe-C alloy eutectic microstructure is presented. Regular eutectic structure was obtained. The fracture surfaces show lamellar structure. Microscopic observation after electrolytic extraction indicates that the grains of longitudinal shape of eutectic cementite have been obtained. These grains are characterized by layered construction with many rounded discontinuities.
Go to article

Abstract

Bimetallic AZ91/AlSi17 samples were produced by compound casting. The casting process involved pouring the AZ91 magnesium alloy heated to 650oC onto a solid AlSi17 aluminum alloy insert placed in a steel mould. Prior to casting, the mould with the insert inside was heated to about 370oC. The bonding zone formed between AZ91 and AlSi17 had a thickness of about 200 μm; it was characterized by a non-homogeneous microstructure. Two different areas were distinguished in this zone: the area adjacent to the AZ91 and the area close to the AlSi17. In the area closest to the AZ91 alloy, a eutectic composed of an Mg17Al12 intermetallic phase and a solid solution of Al in Mg was observed. In bonding zone at a certain distance from the AZ91 alloy an Mg2Si phase co-occurred with the eutectic. In the area adjacent to the AlSi17 alloy, the structure consisted of Al3Mg2, Mg17Al12 and Mg2Si. The fine Mg2Si phase particles were distributed over the entire Mg-Al intermetallic phase matrix. The microhardness of the bonding zone was much higher than those of the materials joined; the microhardness values were in the range 203-298 HV. The shear strength of the AZ91/AlSi17 joint varied from 32.5 to 36 MPa.
Go to article

Abstract

High prices of tin and its limited resources, as well as several valuable properties characterising Cu-Sn alloys, cause searching for materials of similar or better properties at lower production costs. The influence of various nickel additions to CuSn10 casting bronze and to CuSn8 bronze of a decreased tin content was tested. Investigations comprised melting processes and casting of tin bronzes containing various nickel additions (up to 5%). The applied variable conditions of solidification and cooling of castings (metal and ceramic moulds) allowed to assess these alloys sensitivity in forming macro and microstructures. In order to determine the direction of changes in the analysed Cu-Sn-Ni alloys, the metallographic and strength tests were performed. In addition, the solidification character was analysed on the basis of the thermal analysis tests. The obtained results indicated the influence of nickel in the solidification and cooling ways of the analysed alloys (significantly increased temperatures of the solidification beginning along with increased nickel fractions in Cu-Sn alloys) as well as in the microstructure pattern (clearly visible grain size changes). The hardness and tensile strength values were also changed. It was found, that decreasing of the tin content in the analysed bronzes to which approximately 3% of nickel was added, was possible, while maintaining the same ultimate tensile strength (UTS) and hardness (HB) and improved plasticity (A5).
Go to article

Abstract

The work is a continuation of research on the use of water mist cooling in order to increase efficiency of the die-casting process for aluminum alloys. The paper describes the multipoint sequential cooling system of the casting die and its computer control and monitoring. It also includes results of the tests and analysis of cooling methods during making of the casting. These methods differ from each other in the sequence of casting die cooling and cause effective changes in microstructure and mechanical properties of castings made of AlSi11 alloy. The study demonstrated that the use of multipoint sequential cooling with water mist affects the microstructure refinement and reduces the segregation in the cast as well as more than by 20% increases the mechanical properties of castings in the rough state. The study also demonstrates that the sequential cooling of casting die accelerates the cooling of the casting and shortens die-casting cycle.
Go to article

Abstract

The microscale deformation behaviour of the Al-4.5Cu-2Mg alloy has been studied to understand the influence of various processing routes and conditions, i.e. the gravity casting with and without grain refiner, the rheocast process and the strain induced melt activation (SIMA) process. The micromechanics based simulations have been carried out on the optical microstructures of the alloy by 2D representative volume elements (RVEs) employing two different boundary conditions. Microstructural morphology, such as the grain size, the shape and the volume fraction of α-Al and binary eutectic phases have a significant effect on the stress and strain distribution and the plastic strain localization of the alloy. It is found that the stress and strain distribution became more uniform with increasing the globularity of the α-Al grain and the α-Al phase volume fraction. The simulated RVEs also reveals that the eutectic phase carries more load, but least ductility with respect to the α-Al phase. The SIMA processed alloy contains more uniform stress distribution with less stress localization which ensures better mechanical property than the gravity cast, grain refined and rheocast alloy.
Go to article

Abstract

The results are based on two experimental high-manganese X98MnAlSiNbTi24-11 and X105MnAlSi24-11 steels subjected to thermo-mechanical treatment by hot-rolling on a semi-industrial processing line. The paper presents the results of diffraction and structural studies using scanning and transmission electron microscopy showing the role of Nb and Ti micro-additives in shaping high strength properties of high-manganese austenitic-ferritic steels with complex carbides. The performed investigations of two experimental steels allow to explain how the change cooling conditions after thermo-mechanical treatment of the analysed steels affects the change of their microstructure and mechanical properties. The obtained results allow assessing the impact of both the chemical composition and the applied thermo-mechanical treatment technology on the structural effects of strengthening of the newly developed steels.
Go to article

Abstract

The work deal with an assembling and comparing of transformation diagrams of two low-alloy steels, specifically 16MnCrS5 and 20MnCrS5. In this work, diagrams of the type of CCT and DCCT of both steels were assembled. Transformation diagrams were assembled on the basis of dilatometric tests realized on the plastometer Gleeble 3800, of metallographic analyses and of hardness measurements. In addition, for comparison, the transformation diagrams were assembled even with use of the QTSteel 3.2 software. Uniform austenitization temperature of 850°C was chosen in case of both steels and even both types of diagrams. In case of both steels, an influence of deformation led to expected acceleration of phase transformations controlled by diffusion and also of bainite transformation. In both cases, the kinetics of martensitic transformation was not significantly affected by deformation.
Go to article

Abstract

The aim of the current study was to examine the structure of an alloy treated at various temperatures up to 2,000–2,100 °C. Among research techniques for studying alloy structure there were the electron and optical microstructure, X-ray structure, and spectral analysis, and for studying the developed furnace geometric parameters the authors employed mathematical modeling method. The research was performed using aluminum smelting gas-fired furnaces and electric arc furnaces. The objects of the study were aluminum alloys of the brand AK7p and AK6, as well as hydrogen and aluminum oxide in the melt. For determining the hydrogen content in the aluminum alloy, the vacuum extraction method was selected. Authors have established that treatment of molten aluminum alloy in contact with carbon melt at high temperatures of 2,000–2,100 °C has resulted in facilitating reduction of hydrogen and aluminum oxide content in the melt by 40-43% and 50-58%, respectively, which is important because hydrogen and aluminum oxide adversely affect the structure and properties of the alloy. Such treatment contributes to the formation of the extremely fine-grained microstructure of aluminum alloy.
Go to article

Abstract

The paper concerns the problem of discontinuity in high pressure die castings (HPDC). The compactness of their structure is not perfect, as it is sometimes believed. The discontinuities present in these castings are the porosity as follow: shrinkage and gas (hydrogen and gas-air occlusions) origin. The mixed gas and shrinkage nature of porosity makes it difficult to identify and indicate the dominant source. The selected parameters of metallurgical quality of AlSi9Cu3 alloy before and after refining and the gravity castings samples (as DI - density index method), were tested and evaluated. This alloy was served to cast the test casting by HPDC method. The penetrating testing (PT) and metallographic study of both kinds of castings were realized. The application of the NF&S simulation system allowed virtually to indicate the porosity zones at risk of a particular type in gravity and high-pressure-die-castings. The comparing of these results with the experiment allowed to conclude about NF&S models validation. The validity of hypotheses concerning the mechanisms of formation and development of porosity in HPDC casting were also analyzed.
Go to article

Abstract

In the paper the reasons for steam pipeline’s elbow material rupture, made of steel 13CrMo4-5 (15HM) that is being used in the energetics. Based on the mechanical properties in the ambient temperature (Rm, Rp0,2 and elongation A5) and in the increased temperature (Rp0,2t ) it was found, that the pipeline elbow’s material sampled from the ruptured area has lower Rp0,2 i Rp0,2t by around 2% than it is a requirement for 13CrMo4-5 steel in it’s base state. The damage appeared as a result of complex stress state, that substantially exceeded the admissible tensions, what was the consequence of considerable structure degradation level. As a result of the microstructure tests on HITACHI S4200 microscope, the considerable development of the creeping process associates were found. Also the advances progress of the microstructure degradation was observed, which is substantial decomposition of bainite and multiple, with varied secretion size, and in most cases forming the micro cracks chains. With the use of lateral micro sections the creeping voids were observed, that creates at some places the shrinkage porosities clusters and micro pores.
Go to article

Abstract

According to the analysis of the current state of the knowledge shows that there is little information on the process of phase transformations that occur during the cooling Cu-Al-Fe-Ni hypo-eutectoid bronzes with additions of Cr, Mo and/or W, made additions individually or together, for the determination of: the type of crystallizing phases, crystallizing phases, order and place of their nucleation. On the basis of recorded using thermal and derivative analysis of thermal effects phases crystallization or their systems, analysis of the microstructure formed during crystallization - observed on the metallographic specimen casting ATD10-PŁ probe, analysis of the existing phase equilibrium diagrams forming elements tested Cu-Al-Fe-Ni bronze, with additions of Cr, Mo, W and/or Si developed an original model of crystallization and phase transformation in the solid state, the casting of high quality Cu-Al-Fe-Ni bronze comprising: crystallizing type phase, crystallizing phase sequence, place of nucleation.
Go to article

Abstract

A cold roll-bonding process was applied to fabricate an AA1050/AA6061/AA1050 multi-layer sheet. Three Al sheets in which an AA6061 sheet is inserted inside two AA1050 sheets of 2 mm thickness, 40 mm width and 300 mm length were stacked up after surface treatment, and the material was then reduced to a thickness of 1.0 mm by multi-pass cold rolling. The AA1050/AA6061/ AA1050 laminate complex sheet fabricated by roll bonding was then hardened by a natural aging (T4) and an artificial aging (T6) treatments. The microstructures of the as-roll bonded and the age-hardened Al complex sheets were revealed by optical microscope and electron back scatter diffraction analysis, and the mechanical properties were investigated by tensile and hardness testing. The strength of the as-roll bonded complex sheet was found to increase by 2.6 times, compared to that value of the starting material. Both AA1050 and AA6061 showed a typical recrystallization structure in which the grains were equiaxed after heat treatment. However, the grain size was smaller in AA6061 than in AA1050.
Go to article

Abstract

The impact of casting conditions on microstructure a and mechanical properties was described, especially for cast products from AlSi9Cu3 alloy. Particular attention was paid to the parameters of dendritic structure: DAS 1 and DAS 2. Selected mechanical properties (by static tension test) of test castings made using basic technologies of casting: GSC - gravity sand casting, GDC - gravity die-casting and HPDC - high-pressure die-casting, are presented for cast-on test bars and cast separately. Casts were made of the same alloy AlSi9Cu3. Fractures and the zone near the fracture (after static tension test) was subjected to VT - visual tests, PT - penetration tests and metallographic tests. The condition of porosity (fracture zone) was also assessed. The analysis of virtual results was performed using the NovaFlow & Solid system together with the database and they were compared to experimental tests. This way of validation was applied in order to assess the correlation between the local rate of cooling and the size of DAS for GSC, GDC and HPDC technologies. Finally, the correlation between the parameters of structure and mechanical properties with regard to the impact of porosity was signalized.
Go to article

This page uses 'cookies'. Learn more