Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 10
items per page: 25 50 75
Sort by:

Abstract

The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings' fatigue life based on the results of quick and relatively easy static tests.
Go to article

Abstract

The paper analyses the influence of seasonal temperature variations on fatigue strength of flexible and semi-rigid pavement structures chosen for KR4 traffic flow category. The durability of pavement determined assuming a yearly equivalent temperature of 10˚C and assuming season-dependent equivalent temperatures was compared. Durability of pavement was determined with the use of Asphalt Institute Method and French Method. Finite Element Method was applied in order to obtain the strain and stress states by the means of ANSYS Mechanical software. Obtained results indicate a considerable drop in pavement durability if seasonal temperature variations are considered (up to 64% for flexible pavements and up to 80% for semi-rigid pavements). Durability obtained by the French Method presents lower dependence on the analysed aspect.
Go to article

Abstract

Thermo-chemical treatments are known to increase the fatigue life of industrial parts. Due to the imprecise consideration of residual stresses in predicting the durability of components subjected to cyclic loading and their effect on the fatigue life, the authors developed a numerical model combining the influence of residual stresses with stresses caused by bending. The authors performed the numerical simulation with the use of Finite Element Method to analyse material behaviour during cyclic loading. The residual stress state developed during nitriding was introduced onto cross-section of the numerical specimen. The goal of this work was better understanding of the real conditions of the nitride steel fatigue processes and improving the knowledge about numerical predicting of the fatigue life for parts with residual stresses. The results of simulation were compared with plane bending fatigue tests. The presented method indicates the possibility of increasing the accuracy of the fatigue analysis of elements after surface treatment, increasing its certainty and the ability to perform better optimization of service life.
Go to article

Abstract

In the paper, on the basis of the performed tests, low-cycle fatigue characteristics (LCF) of selected light metal alloys used among others in the automotive and aviation industries were developed. The material for the research consisted of hot-worked rods made of magnesium alloy EN-MAMgAl3Zn1, two-phase titanium alloy Ti6Al4V and aluminium alloy AlCu4MgSi(A). Alloys used in components of means of transport should have satisfactory fatigue, including low-cycle fatigue, characteristics. Low-cycle fatigue tests were performed on an MTS-810 machine at room temperature. Low-cycle fatigue tests were performed for three total strain ranges Δεt = 0.8%, 1.0% and 1.2% with a cycle asymmetry coefficient R = –1. On the basis of the obtained results, characteristics of the fatigue life of materials, cyclic deformation σa = f(N) and cyclic deformation of the tested alloys were developed. The tests showed that titanium alloy Ti6Al4V was characterised by the highest fatigue life Nf, whereas the lowest fatigue life was found in the tests of the aluminium alloy AlCu4MgSi(A).
Go to article

Abstract

The paper presents the results of research on low cycle properties of high-chromium martensitic GX12CrMoVNbN9-l (GP91) cast steel. The tests of fatigue strength were carried out at two temperatures: room temperature and at 600 degrees centigrade. At both temperatures the occurrence of cyclic softening of the cast steel was observed, revealing no clear stabilization period. Moreover, it has been proved that the fatigue life is influenced by the temperature which depends on the level of strain. The greatest influence was observed for the smallest strain levels applied in the research.
Go to article

Abstract

The development of a novel design for the toothed segment of drive transmission in longwall shearer is expected to significantly reduce the cost of individual components of the feed system and the related work of repair and renovations, increasing at the same time the safety of mine repair teams. The conducted experimental and numerical analysis of the state of stress and strain in the innovative design of the toothed segment has enabled estimating the maximum effort of the developed structure. Based on the results of fundamental mechanical studies of the cast L20HGSNM steel and fatigue tests combined with the numerical stress/strain analysis, the fatigue life curve was plotted for the examined casting of the rack.
Go to article

Abstract

This paper presents the results of an extensive investigation of asphalt concrete beams with geosynthetics interlayer. The subject of the research is an evaluation of infl uence of geosynthetics interlayer applied to bituminous samples on their fatigue life. The results of the tests evidences that when geosynthetics are used, the fatigue life depends mainly on the type of bituminous mixture, the type of geosynthetics, and the type and the amount of bitumen used for saturation and sticking. The amount of bitumen used to saturate and fix the geosynthetic signifi cantly changes the samples fatigue properties. Essential positive correlation between fatigue and parameters of interlayer bonding (shear strength, shear stiffness) occurs in both testing temperatures.
Go to article

Abstract

The paper presents the method of determination of two-dimensional probability distribution Pf of crack initiation versus fatigue life N and the fatigue damage parameter : Pf − N − ϭ. The proposed distribution Pf uses parameters of the standard fatigue characteristics and allows calculating fatigue life of elements with heterogeneous stress fields at any probability level. The model was successfully verified on experimental test results.
Go to article

Abstract

For riveted joints with eccentricities of the load path, bending moments referred to as secondary bending are induced under nominally tensile loading conditions. Two simple theoretical models proposed in the literature to estimate the associated bending stresses are evaluated in the paper. Both approaches have been implemented in computer programs and applied to estimate the effect of several variables on the calculated bending stresses in the lap joint. Possibilities of the experimental and numerical verification of the models are also considered. Finally, a correlation between the secondary bending computed by one of the simple models and the observed fatigue properties of riveted specimens, as reported in the literature, is investigated. It is shown that deviations of the experimental results from the theoretical expectations stem from additional to secondary bending factors, like the inhomogeneous load transmission through the joint and the residual stresses induced by riveting process. These phenomena are known to be relevant to the fatigue behaviour of riveted joints, but they are not accounted for by the simple models. A conclusion from the present study is that despite the limitations and approximations inherent in the simple models, they provide reliable estimates of nominal bending stresses at the critical rivet rows and can be utilized in currently used semi-empirical concepts for predictions on the fatigue life of riveted joints.
Go to article

This page uses 'cookies'. Learn more