Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The Ebbabreen ice−cored moraine area is covered with a sediment layer of up to 2.5 m thick, which mostly consists of massive diamicton. Due to undercutting by lateral streams, debris flow processes have been induced in marginal parts of this moraine. It was recognized that the sedimentology of deposits within the deposition area of debris flows is the effect of: (1) the origin of the sediments, (2) the nature of the debris flow, and (3) post−debris flow reworking. Analysis of debris flow deposits in microscale (thin sections) suggests a common mixing during flow, even though a small amount of parent material kept its original structure. The mixing of sediments during flow leads to them having similar sedimentary characteristics across the deposition area regardless of local conditions ( i.e. slope angle, water content, parent material lithology). After the deposition of sediments that were transported by the debris flow, they were then reworked by a further redeposition process, primarily related to meltwater stream action.
Go to article

Abstract

The Slyngfjellet Conglomerate which occurs at the base of the Upper Proterozoic Sofiebogen Group in South Spitsbergen had formed predominantly as a debris-flow deposit, with subordinate contribution by fluvial and probably lacustrine sediments. There is no evidence for glacial conditions at the time of formation of the conglomerate, the latter being much older than the latest Proterozoic Varangian glaciation tillites elsewhere in Svalbard. The Slyngfjellet Conglomerate originally filled buried valleys eroded by rivers in block-faulted and uplifted western margin of the Mid-Proterozoic Torellian Basin.
Go to article

This page uses 'cookies'. Learn more