Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

A compact Sierpinski Carpet square fractal multiband antenna operating at 3.9 (WiMAX) /6.6 (Satellite TV) /8.1/10.7/11.8 GHz (X-band) is presented. The proposed Microstrip Patch Antenna (MSPA) consists of a Sierpinski Carpet square fractal radiator in which square slots are etched out and a tapered microstrip feed line. The Sierpinski Carpet square fractal patch modifies the current resonant path thereby making the antenna to operate at five useful bands. Impedance matching at these bands are solely achieved by using Sierpinski square slot and tapered feedline, thus eliminating the need of any external matching circuit. The dimensions of the compact antenna is 32 x 32 x 1,6 mm3 and exhibits S11<-10dB bandwidth of about 4.8% (4.01-3.82 GHz), 2.1% (6.62-6.48 GHz), 2.7% (8.24-8.02 GHz), 2.1% (10.77-10.54 GHz) and 21% (12.1-11.60 GHz) with the gain of 7.57/3.91/3.77/6.74/1.33 dB at the operating frequencies 3.9/6.6/8.1/10.7 and 11.8 GHz, respectively under simulation analysis carried out by using HFSS v.13.0.
Go to article

Abstract

A compact planar multiband antenna operating at 3.1 (S-band) /4.7/6.4/7.6 (C-band) /8.9/10.4/11.8 GHz (X-band) is presented. The proposed Microstrip Patch Antenna (MSPA) consists of a rectangular radiator in which an E-shaped slot is etched out and a microstrip feed line. The E-shaped slot modifies the total current path thereby making the antenna to operate at seven useful bands. No external impedance matching circuit is used and the impedance matching at these bands are solely achieved by using a rectangular microstrip feed line of length 10mm (L6) and width 2mm (W10). The antenna has a compact dimension of ���� × ���� × ��. �� ������ and exhibits S11<-10dB bandwidth of about 6.45% (3.2-3.0GHz), 8.5% (4.9-4.5GHz), 7.6% (6.7-6.2GHz), 3.9% (7.8-7.5GHz), 5.7% (9.1-8.6GHz), 1.2% (10.44-10.35GHz) and 2.2% (11.87-11.62GHz). The simulation analysis of the antenna is carried out by using HFSS v.13.0.
Go to article

Abstract

In a PV-dominant DC microgrid, the traditional energy distribution method based on the droop control method has problems such as output voltage drop, insufficient power distribution accuracy, etc. Meanwhile, different battery energy storage units usually have different parameters when the system is running. Therefore, this paper proposes an improved control method that introduces a reference current correction factor, and a weighted calculation method for load power distribution based on the parameters of battery energy storage units is proposed to achieve weighted allocation of load power. In addition, considering the variation of bus voltage at the time of load mutation, voltage secondary control is added to realize dynamic adjustment of DC bus voltage fluctuation. The proposed method can achieve balance and stable operation of energy storage units. The simulation results verified the effectiveness and stability of the proposed control strategy.
Go to article

This page uses 'cookies'. Learn more