Details

Title

Test Reactions to Study Efficiency of

Journal title

Chemical and Process Engineering

Yearbook

2015

Issue

No 2 June

Authors

Keywords

micromixing ; efficiency of mixing ; IEM model ; engulfment model ; chemical test reactions

Divisions of PAS

Nauki Techniczne

Coverage

171-208

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2015[2015.01.01 AD - 2015.12.31 AD]

Type

Artykuły / Articles

Identifier

DOI: 10.1515/cpe-2015-0013 ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2015; No 2 June; 171-208

References

Commenge (2011), Villermaux - Dushman protocol for experimental characterization of micromixers, Chem Eng Process, 50, 979, doi.org/10.1016/j.cep.2011.06.006 ; Panic (2004), Experimental approaches to a better understanding of mixing performance of microfluidic devices, Chem Eng J, 101, 409, doi.org/10.1016/j.cej.2003.10.026 ; Fang (2001), Micromixing efficiency in static mixer, Chem Eng Sci, 56, 3797, doi.org/10.1016/S0009-2509(01)00098-7 ; Bałdyga (2008), Dispersion of nanoparticle clusters in a rotor - stator mixer, Ind Eng Chem Res, 47, 3652, doi.org/10.1021/ie070899u ; Su (2011), Ideal micromixing performance in packed microchannels, Chem Eng Sci, 66, 2912, doi.org/10.1016/j.ces.2011.03.024 ; Jasińska (2013), Investigations of mass transfer with chemical reactions in two - phase liquid - liquid systems, Chem Eng Res Des, 91, 2169, doi.org/10.1016/j.cherd.2013.05.010 ; Fournier (1996), A new parallel competing reaction system for assessing micromixing efficiency - experimental approach, Chem Eng Sci, 22, 5053, doi.org/10.1016/0009-2509(96)00270-9 ; Costa (1972), Reactions with non - linear kinetics in partially segregated fluids, Chem Eng Sci, 27, 2041, doi.org/10.1016/0009-2509(72)87062-3 ; Batchelor (1980), Mass transfer from small particles suspended in turbulent flow, J Fluid Mech, 98, 609, doi.org/10.1017/S0022112080000304 ; Bourne (2008), Comments on the iodide / iodate method for chracterising micromixing, Chem Eng J, 140, doi.org/10.1016/j.cej.2008.01.031 ; Schaer (1999), Determination of local energy dissipation rates in impinging jets by a chemical reaction method, Chem Eng J, 72, 125, doi.org/10.1016/S1385-8947(98)00152-1 ; Jasińska (2013), a Application of test reactions to study micromixing in the rotor - stator mixer ( test reactions for rotor - stator mixer ), Appl Therm Eng, 57, 1, doi.org/10.1016/j.applthermaleng.2012.06.036 ; Palmer (1982), The equilibria and kinetics of iodine hydrolysis, Radiochim Acta, 31, doi.org/10.1524/ract.1982.31.12.37 ; Jasińska (2010), Modelowanie mieszania z reakcją w mieszalniku statycznym typu Kenics, Ap Chem, 49, 41. ; Chella (1985), Stretching in some classes of fluid motions and asymptotic mixing efficiencies as a measure of flow classification, Arch Rat Mech Anal, 90, 15, doi.org/10.1007/BF00281585 ; Guichardon (2000), Characterisation of mixing efficiency by the iodide / iodate reaction system Part Kinetic study, Chem Eng Sci, 55, 4243, doi.org/10.1016/S0009-2509(00)00069-5 ; Villermaux (1972), Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide per modéle d interaction phénoménologique nd Int On Chemical Reaction Engieering Amsterdam, Symp, 1972. ; Jasińska (2015), Specific features of power characteristics of in - line rotor - stator mixers, Chem Eng Proc, 91, 43, doi.org/10.1016/j.cep.2015.03.015 ; Jasińska (2010), Badanie mikromieszania płynów w mieszalniku typu rotor - stator z wykorzystaniem złożonych reakcji testowych, Inż Ap Chem, 49. ; Bałdyga (1994), Investigation of mixing in jet reactors using fast , competitiveconsecutive reactions, Chem Eng Sci, 49, 1937, doi.org/10.1016/0009-2509(94)80078-2 ; Bourne (1994), Investigation of micromixing in stirred tank reactors using parallel reactions, Ind Eng Chem Res, 33, 41, doi.org/10.1021/ie00025a007 ; Siddiqui (2009), Characteristics of a confined impinging jet reactor : energy dissipation , homogeneous and heterogeneous reaction products , and effect of unequal flow, Ind Eng Chem Res, 48, 7945, doi.org/10.1021/ie801562y ; Kölbl (2008), The iodide iodate method to characterize microstructured mixing devices, AIChE J, 54, 639, doi.org/10.1002/aic.11408 ; Chu (2007), Micromixing efficiency of a novel rotor - stator reactor, Chem Eng J, 128, doi.org/10.1016/j.cej.2006.10.024 ; Schönstedt (2015), Scale - up of the power draw of inline - rotor - stator mixers with high throughput, Chem Eng Res Des, 93, 12, doi.org/10.1016/j.cherd.2014.04.004 ; Hall (2011), Scaling up of Silverson rotor - stator mixers, Can J Chem Eng, 89, 1040, doi.org/10.1002/cjce.20556 ; Cooke (2011), Power consumption characteristics of an in - line Silverson high shear mixer, AIChE J, 58, 1683, doi.org/10.1002/aic.12703 ; Ottino (1981), Efficiency of mixing from data on fast reactions in multi - jest reactors and stirred tanks, AIChE J, 27, 184, doi.org/10.1002/aic.690270203 ; Pope (1985), PDF methods for turbulent reactive flows, Prog Energy Combust Sci, 11, 119, doi.org/10.1016/0360-1285(85)90002-4 ; Nunes (2012), Micromixing assessment of confined impigning jest mixers used in RIM, Chem Eng Sci, 74, 276, doi.org/10.1016/j.ces.2012.02.054 ; Falk (2010), Performance comparison of micromixers, Chem Eng Sci, 65, 405, doi.org/10.1016/j.ces.2009.05.045 ; Kashid (2011), Mixing efficiency and energy consumption for five generic microchannel designs, Chem Eng J, 167, doi.org/10.1016/j.cej.2010.09.078 ; Dopazo (1976), O Statistical treatment of nonisothermal chemical reactions in turbulence, Combust Sci Technol, 13, 99, doi.org/10.1080/00102207608946731 ; Monnier (2000), Efects of ultrasound on micromixing in flow cell, Chem Eng Sci, 55, 4009, doi.org/10.1016/S0009-2509(00)00067-1 ; Jia (2006), A membrane reactor intensifying micromixing : Effects of parameters on segregation index, J Membr Sci, 276, doi.org/10.1016/j.memsci.2005.10.003 ; Dopazo (1975), Probability density function approach for a turbulent heated jet Centerline evolution, Phys Fluids, 18, 397, doi.org/10.1063/1.861163 ; Hall (null), The effect of scale and interfacial tension on liquids - liquid dispersion in in - line Silverson rotor - stator mixers, Chem Eng Res Des, 91, 2156, doi.org/10.1016/j.cherd.2013.04.021 ; Monnier (1999), The influence of ultrasound on micromixing in a semi - batch reactor, Chem Eng Sci, 54, 2953, doi.org/10.1016/S0009-2509(98)00335-2 ; Hu (2009), Characterization of micro - mixing in a novel impinging streams reactor, Front Chem Eng China, 3, 58, doi.org/10.1007/s11705-009-0106-8 ; Johnson (2003), Chemical processing and micromixing in confined impinging jets, AIChE J, 49, 2264, doi.org/10.1002/aic.690490905 ; Faryadi (2014), Effect of high frequency ultrasound on micromixing efficiencyin microchannels, Chem Eng Proc, 77, 13, doi.org/10.1016/j.cep.2014.01.001 ; Bałdyga (1989), Simplification of micromixing calculations, Chem Eng J, 42, 83, doi.org/10.1016/0300-9467(89)85002-6 ; Ottino (1980), An efficiency for batch mixing of viscous fluids, Chem Eng Sci, 35, 1454, doi.org/10.1016/0009-2509(80)85142-6 ; Liu (2006), CFD Prediction for chemical processing in a confined impinging - jets reactor, AIChE J, 52, 731, doi.org/10.1002/aic.10633 ; Parvizian (2012), Macro - and micromixing studies on a high frequency continuous tubular sonoreactor, Chem Eng Proc, 57, 58, doi.org/10.1016/j.cep.2012.04.006 ; Bourne (1992), An Improved reaction system to investigate micromixing in highintensity mixers, Ind Eng Chem Res, 31, 949, doi.org/10.1021/ie00003a042 ; Bałdyga (2001), Effects of mixing on parallel chemical reactions in a continuousflow stirred - tank reactor, Chem Eng Res Des, 79, 895, doi.org/10.1205/02638760152721109 ; Villermaux (1994), A generalized mixing model for initial contacting of reactive fluids, Chem Eng Sci, 49, 24, doi.org/10.1016/0009-2509(94)00303-3 ; Kunowa (2007), Characterization of mixing efficiency in polymerization reactors using competitive - parallel reactions Macromol, Symp, 259, doi.org/10.1002/masy.200751305 ; Costa (1972), a Some kinetic and thermodynamic features of reactions between partially segregated fluids, Chem Eng Sci, 27, 653, doi.org/10.1016/0009-2509(72)85001-2 ; Nouri (2008), Characterisation and comparison of the micromixing efficiency in torus and batch stirred reactors, Chem Eng J, 142, doi.org/10.1016/j.cej.2008.01.030 ; Bałdyga (1984), Mixing and fast chemical reaction - VIII Initial deformation of material elements in isotropic , homogeneous turbulence, Chem Eng Sci, 39, 329, doi.org/10.1016/0009-2509(84)80031-7 ; Guichardon (2000), Characterisation of mixing efficiency by the iodide / iodate reaction system Part Experimental procedure, Chem Eng Sci, 55, 4233, doi.org/10.1016/S0009-2509(00)00068-3 ; Guo (2013), Mixing performance assessment of a multi - channel mini heat exchanger reactor with arborescent distributor and collector, Chem Eng J, 227, doi.org/10.1016/j.cej.2012.08.068 ; Jasińska (2014), Dispersion of oil droplets in rotor - stator mixers : Experimental investigations and modeling, Chem Eng Process, 84, 45, doi.org/10.1016/j.cep.2014.02.008 ; Kölbl (2013), Kinetic investigation of the Dushman reaction at concentrations relevant to mixing studies in stirred tank reactors, Chem Eng Sci, 93, 47, doi.org/10.1016/j.ces.2013.01.067 ; Bałdyga (2007), a Investigations of micromixing in a rotor - stator mixer, Chem Process Eng, 28, 867. ; Baccar (2009), Characterization of mixing in a hollow fiber membrane contactor by the iodide - iodate method : Numerical simulations and experiments, Chem Eng J, 148, doi.org/10.1016/j.cej.2008.12.020 ; Hall (2011), a Droplet break - up by in - line Silverson rotor - stator mixer, Chem Eng Sci, 66, 2068, doi.org/10.1016/j.ces.2011.01.054 ; Kolmogorov (1949), On the disintegration of drops in a turbulent flow, Dokl Akad Nauk, 66, 825. ; Jasińska (2013), Dyspersja kropel w mieszalnikach typu rotor - stator, Inż Ap Chem, 52, 187. ; Aubin (2010), Current methods for characterising mixing and flow in microchannels, Chem Eng Sci, 65, 2065, doi.org/10.1016/j.ces.2009.12.001 ; Bałdyga (1990), Comparison of the engulfment and the interaction - by - exchange - with - the - mean micromixing models, Chem Eng J, 45, 25, doi.org/10.1016/0300-9467(90)80022-5 ; Kölbl (2010), The iodide iodate reaction method : The choice of the acid, Chem Eng Sci, 65, 1897, doi.org/10.1016/j.ces.2009.11.032 ; Bourne (2003), Mixing and the selectivity of chemical reactions, Org Proc Res Dev, 7, 471, doi.org/10.1021/op020074q ; Bolzern (1985), Rapid chemical reactions in a centrifugal pump, Chem Eng Res Des, 63, 275. ; Parvizian (2011), Macro - and micromixing in a novel sonochemical reactor using high frequency ultrasound, Chem Eng Proc, 50, 732, doi.org/10.1016/j.cep.2011.06.011 ; Özcan (2011), Power and flow characteristics of three rotor - stator heads, Can J Chem Eng, 89, 1005, doi.org/10.1002/cjce.20553 ; Bourne (1990), Kinetics of the diazo coupling between - naphthol and diazotized sulfanilic acid, Ind Eng Chem Res, 29, 1761. ; Lee (2014), Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride, Ultrason Sonochem, 21, 60, doi.org/10.1016/j.ultsonch.2013.07.005 ; Mahajan (1996), Micromixing effects in a two - impinging - jets precipiatator, AIChE J, 42, 1801, doi.org/10.1002/aic.690420702 ; Malecha (2009), Serpentine microfluidic mixer made in LTCC, Sens Chem, 143, doi.org/10.1016/j.snb2009.08.010 ; Bałdyga (1998), Non - isothermal micromixing in turbulent liquids : Theory and experiment, Can J Chem Eng, 76, 641, doi.org/10.1002/cjce.5450760336

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×