Details

Title

Power electronic systems as a crucial part of Smart Grid infrastructure - a survey

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2011

Volume

59

Issue

No 4

Authors

Divisions of PAS

Nauki Techniczne

Coverage

455-473

Date

2011

Identifier

DOI: 10.2478/v10175-011-0058-2 ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2011; 59; No 4; 455-473

References

Sørensen B. (2011), Renewable Energy. Volume I: Renewable Energy Origins and Flows. Volume II: Renewable Energy Technologies I, Volume III: Renewable Energy Technologies II, Volume IV: Renewable Energy in Society. ; Benysek G. (2007), Improvement in the Quality of Delivery of Electrical Energy Using Power Electronics Systems. ; Strzelecki R. (2008), Power Eectronics in Smart Electrical Energy Networks, doi.org/10.1007/978-1-84800-318-7 ; Gellings C. (2003), Smart power delivery: a vision for the future, EPRI J, 1. ; Wang J. (2009), Smart grid technologies, IEEE Indust. Electronics Magazine, 3, 2, 16, doi.org/10.1109/MIE.2009.932583 ; Machowski J. (2002), Flexible transmission systems - FACTS, Electrotechnical Review, 78, 7, 189. ; Sood V. (2004), HVDC and FACTS Controllers: Applications of Static Converters in Power Systems. ; Blaabjerg F. (2006), Power Electronics for Modern Wind Turbines. ; Wang L. (2010), Wind Power Systems. Applications of Computational Intelligence. ; Heier S. (2006), Grid Integration of Wind Energy Conversion Systems. ; Simões M. (2004), Renewable Energy Systems. Design and Analysis with Induction Generators. ; Boldea I. (2006), Variable Speed Generators. ; Sikorski A. (2009), Cooperation of induction squirrel-cage generator with grid connected AC/DC/AC converter, Bull. Pol. Ac.: Tech, 57, 4, 317. ; Schulz D. (2009), Improved grid integration of wind energy systems, Bull. Pol. Ac.: Tech, 57, 4, 311. ; Wasiak I. (2009), Integration of distributed energy sources with electrical power grid, Bull. Pol. Ac.: Tech, 57, 4, 297. ; Kazmierkowski M. (2002), Control in Power Electronics. ; Bobrowska-Rafał M. (2009), Control of PWM rectifier under grid voltage dips, Bull. Pol. Ac.: Tech, 57, 4, 337. ; Bose B. (2006), Power Electronics and Motor Drives: Advances and Trends. ; Quang N. (2008), Vector Control of Three-Phase AC Machines: System Development in the Practice. ; Emadi A. (2005), Uninterruptible Power Supplies and Active Filters. ; Hadjipaschalis I. (2009), Overview of current and future energy storage technologies for electric power applications, Renewable and Sustainable Energy Reviews, 13, 6-7, 1513, doi.org/10.1016/j.rser.2008.09.028 ; Sourkounis C. (2009), Comparison of energy storage management methods to smooth power fluctuations of wind parks, Electrotechnical Review, 85, 10, 196. ; Blaabjerg F. (2004), Power electronics as efficiency interface in dispersed power generation systems, IEEE Trans. on Power Electronics, 19, 5, 1184, doi.org/10.1109/TPEL.2004.833453 ; Jiang Y. (2009), Single phase full bridge inverter with coupled filter inductors and voltage doubler for PV module integrated converter system, Bull. Pol. Ac.: Tech, 57, 4, 355. ; Dunlop J. (2009), Photovoltaic Systems. ; Enjeti P. (2009), Power Conditioning Systems for Fuel Cell Applications. ; Lai J. (2009), Power conditioning circuit topologies, IEEE Ind. Electronics Magazine, 3, 2, 24, doi.org/10.1109/MIE.2009.932580 ; Luo F. (2006), Essential DC/DC Converters. ; Jalbrzykowski S. (2009), A bidirectional DC-DC converter for renewable energy systems, Bull. Pol. Ac.: Tech, 57, 4, 363. ; Calais M. (2000), Inverters for single-phase grid connected photovoltaic systems - an overview, Conf. Proc. PESC, 4, 23. ; Huang Y. (2006), Z-Source inverter for residential photovoltaic systems, IEEE Trans. on Power Electronics, 21, 6, 176, doi.org/10.1109/TPEL.2006.882913 ; Kazimierczuk M. (2009), High Frequency Magnetics Components. ; Emadi A. (2009), Integrated Power Electronic Converters and Digital Control, doi.org/10.1201/9781439800706 ; Liu W. (2008), Power density improvement in integrated electromagnetic passive modules with embedded heat extractors, IEEE Trans. on Power Electronics, 23, 6, 3142, doi.org/10.1109/TPEL.2008.2005367 ; Lasseter R. (2004), Microgrid: a conceptual solution, Conf. Proc. PESC, 6, 4285. ; Ise T. (2006), Advantages and circuit configuration of a DC microgrid, null, 1. ; Kawamura A. (2008), State-of-the-art. High power density and high efficiency DC-DC chopper circuits fot HEV and FCEV applications, Electrotechnical Review, 84, 9, 1. ; Ghosh A. (2002), Power Quality Enhancement Using Custom Power Devices, doi.org/10.1007/978-1-4615-1153-3 ; Benysek G. (2009), Improvement in the efficiency of the distributed power systems, Bull. Pol. Ac.: Tech, 57, 4, 369. ; Carlsson A. (1998), The Back to Back Converter - Control and Design. ; Han B. (2006), Back to back HVDC system using a 36-step voltage source converter, IEEE Proc. Generation, Transmission and Distribution, 153, 6, 677, doi.org/10.1049/ip-gtd:20060053 ; Flourentzou N. (2009), VSC based HVDC power transmission systems: an overview, IEEE Trans. on Power Electronics, 24, 3, 592, doi.org/10.1109/TPEL.2008.2008441 ; Błajszczak G. (2011), The state of the art of HVDC transmission systems, Electrical Power Engineering, 7, 1. ; Hagiwara M. (2003), Performance of a self-commutated BTB HVDC link system under a single-line to ground fault condition, IEEE Trans. on Power Electronics, 18, 1, 278, doi.org/10.1109/TPEL.2002.807103 ; Rodriguez J. (2002), Multilevel inverters: a survey of topologies, controls, and applications, IEEE Trans. on Electronics, 49, 4, 724, doi.org/10.1109/TIE.2002.801052 ; Wu B. (2006), High-Power Converters and AC Drives, doi.org/10.1002/0471773719 ; Hagiwara M. (2007), Dynamic behavior of a 21 level BTB based power flow controller under single-line-to-ground fault conditions, IEEE Trans. on Indust. Applications, 43, 5, 1379, doi.org/10.1109/TIA.2007.904437 ; Jiang Z. (2008), Hybrid DC and AC linked microgrids: towards integration of distributed energy resources, IEEE Energy 2030 Conf, 1, 1, doi.org/10.1109/ENERGY.2008.4781029 ; Akagi H. (2007), Instantaneous Power Theory and Applications to Power Conditioning, doi.org/10.1002/0470118938 ; Fujita H. (1998), Unified power quality conditioner: the integration of series and shunt active filter, IEEE Trans. on Power Electronics, 13, 2, 315, doi.org/10.1109/63.662847 ; Aredes M. (1998), An universal active power line conditioner, IEEE Trans. on Power Delivery, 13, 2, 1453, doi.org/10.1109/61.660927 ; Wang J. (2004), Unified power flow controller using the cascade multilevel inverter, IEEE Trans. on Power Electronics, 19, 4, 1077, doi.org/10.1109/TPEL.2004.830073 ; Jauch T. (1998), Power Quality Ensured by Dynamic Voltage Correction. ; Huang C. (2003), Design of dynamic voltage restorer with disturbance-filtering enhancement, IEEE Trans. Power Electronics, 18, 5, 1202, doi.org/10.1109/TPEL.2003.816192 ; Ronan E. (2002), A power electronic-based distribution transformer, IEEE Trans. on Power Delivery, 17, 2, 537, doi.org/10.1109/61.997934 ; Heinemann L. (2001), The universal power electronics based distribution transformer, an unified approach, Power Electronics Specialists Conf. - PESC, 2, 504. ; Chen D. (2008), Novel current-mode AC/AC converters with high-frequency AC link, IEEE Trans. on Indust. Electronics, 55, 1, 30, doi.org/10.1109/TIE.2007.896135 ; Friedli T. (2010), Comprehensive comparison of three-phase AC-AC matrix converter and voltage DC-Link back-to-back converter systems, Proc. IEEE/IEEJ Int. Power Electronics Conf, 1, 1. ; Inoue S. (2006), A bi-directional isolated DC-DC converter as a core circuit of the next-generation medium- voltage power conversion system, Power Electronics Specialists Conf. PESC, 48, 314. ; Staudt V. (2005), Konzept eines mobilen elektronischen 110-kV/mittelspan-nungs-leistung-stransformators, Technische Innovationen in Verteilungsnetzen: Vorträge der ETG-Fachtagung, 1-2, 59. ; Wang J. (2009), Smart grid technologies. development of 15-kV SiC IGBTs and their impact on utility applications, IEEE Indust. Electronics Magazine, 1, 6. ; Directorate-General for Energy and Transport, <i>Eur. Energy and Transport Trends to 2030</i>, European Commission, Brussels, 2007. ; Clement-Nyns K. (2011), The impact of vehicle-to-grid on the distribution grid, Electric Power Systems Research, 81, 1, 185, doi.org/10.1016/j.epsr.2010.08.007 ; Lund H. (2008), Integration of renewable energy into the transport and electricity sectors through V2G, Energy Policy, 36, 9, 3578, doi.org/10.1016/j.enpol.2008.06.007 ; Kempton W. (2005), Vehicle-to-grid power fundamentals: calculating capacity and net revenue, J. Power Sources, 144, 1, 268, doi.org/10.1016/j.jpowsour.2004.12.025 ; Guille Ch. (2009), A conceptual framework for the vehicle-to-grid (V2G) implementation, Energy Policy, 37, 11, 4379, doi.org/10.1016/j.enpol.2009.05.053 ; Mulder G. (2010), Electricity storage for grid-connected household dwellings with PV panels, Solar Energy, 84, 7, 1284, doi.org/10.1016/j.solener.2010.04.005 ; D. Paramashivan Kaundinya (2009), Grid-connected versus stand-alone energy systems for decentralized power - a review of literature, Renewable and Sustainable Energy Reviews, 13, 8, 2041, doi.org/10.1016/j.rser.2009.02.002 ; Miśkiewicz R. (2011), Contactless power supply system with bidirectional energy transfer for electric vehicle, Electrotechnical Review, 8, 212. ; Hanh Y. (2009), A new scheme for power factor correction and active filtering for six-pulse converters loads, Bull. Pol. Ac.: Tech, 57, 2, 157. ; Jing-Xin W. (2010), Combining the principles of variable structure, direct torque control, and space vector modulation for induction motor fed by matrix converter, Bull. Pol. Ac.: Tech, 58, 4, 657.
×