Details

Title

Review of numerical models of cavitating flows with the use of the homogeneous approach

Journal title

Archives of Thermodynamics

Yearbook

2016

Issue

No 2

Authors

Keywords

sheet cavitation ; cloud cavitation ; homogeneous models ; steady-state ; unsteady ; hydrofoil ; venturi ; cylinder

Divisions of PAS

Nauki Techniczne

Coverage

71-88

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2016

Type

Artykuły / Articles

Identifier

DOI: 10.1515/aoter-2016-0013

Source

Archives of Thermodynamics; 2016; No 2; 71-88

References

Ducoin (2012), Numerical modeling of unsteady cavitating flows around a stationery hydrofoil, Int J Rot Mach, doi.org/10.1155/2012/215678 ; Goncalves (2013), Numerical study of expansion tube problems : towards the simulation of cavitation, Comput Fluids, 1, doi.org/10.1016/j.compfluid.2012.11.019 ; Wu (2005), Time - dependent turbulent cavitating flow computations with interfacial transport and filter - based models, Int J Numer Meth Fl, 49, 739, doi.org/10.1002/fld.1047 ; Senocak (2004), Interfacial dynamics - based model ling of turbulent cavitating flows part model development and steady - state computations, Int J Numer Meth Fl, 44, 1. ; Morgut (2011), Comparison of mass transfer model for the numerical prediction of sheet cavitation around a hydrofoil Flow, Int J Multiph, 620, doi.org/10.1016/j.ijmultiphaseflow.2011.03.005 ; Reynolds (null), Experiments showing the boiling of water in an open tube at ordinary temperatures Scientific Papers on Mechanical and Physical Subject Vol Cambridge Uni Cambridge, II, 1894. ; Kunz (2000), A preconditioned Navier - Stokes method for two - phase flows with application to cavitation prediction, Comput Fluids, 29, doi.org/10.1016/S0045-7930(99)00039-0 ; Konstantinov (2015), Numerical cavitation model for simulation of mass flow stabilization effect in ANSYS CFX, Mod Appl Sci, 9, 21. ; Merkle (1998), Computational modeling of the dynamics of sheet cavitations In rd Grenoble, Proc Int Symp, 3. ; Goncalves (2014), Modeling for isothermal cavitation with a fourequation model Multiphase Flow, Int J, 54. ; Singhal (2002), Mathematical basis and validation of the full cavitation model Fluids, Eng, 124, 617. ; Goel (2008), Surrogate model - based strategy for cryogenic cavitation model validation and sensitivity evaluation, Int J Numer Meth Fl, 58, 969, doi.org/10.1002/fld.1779 ; Sobieski (2011), The basic equations of fluid mechanics in form characteristic of the finite volume method, Techn Sci, 14, 299. ; Ivany (1965), Cavitation bubble col lapse in viscous compressible liquids - numerical analysis Basic, Eng, 87, 977. ; Kubota (1992), A new modeling of cavitating flows : a numerical study of unsteady cavitation on a hydrofoil section Fluid, Mech, 240, 59. ; Frikha (2008), Influence of the cavitation model on the simulation of cloud cavitation on D foil section, Int J Rot Mach, doi.org/10.1155/2008/146234 ; Schnerr (2001), Physical and numerical modeling of unsteady cavitation dynamics In th Multiphase Flow New Orleans, Proc Int Conf, 4, 01. ; Senocack (2001), Numerical simulation of turbulent flows with sheet cavitation In th Pasadena, Proc Int Symp, 4. ; Huang (2011), A modified density based cavitation model for time dependent turbulent cavitating flow computations Chinese n, Sci Bull, 1985, doi.org/10.1007/s11434-011-4540-x ; Žnidarčič (2015), Modeling cavitation in a rapidly changing pressure field - application to a smal l ultrasonic horn, Ultrason Sonochem, 22, 482, doi.org/10.1016/j.ultsonch.2014.05.011 ; Zwart (2004), A two - phase flow model for prediction cavitation dynamics In th Multiphase Flow Yokohama, Proc Int Conf, 5. ; Morgut (2012), Numerical predictions of cavitating flow around model scale propel lers by CFD and advanced model calibration, Int J Rot Mach, doi.org/10.1155/2012/618180 ; Ahuja (2001), Simulations of cavitating flows using hybrid unstructured meshes Fluids, Eng, 123, 331. ; Hohenberg (1977), Theory of dynamic critical phenomena Modern, Rev Phys, 49, 435. ; Merkle (2006), Multi - Disciplinary Computational Analysis in Propulsion In nd ASEE Joint Propulsion Conf, Proc AIAA ASME SAE, 42. ; Shi (2014), A Rayleigh - Plesset based transport model for cryogenic fluid cavitating flow computations China, Sci Phys Mech Astron, 57, 764, doi.org/10.1007/s11433-013-5198-y ; Plesset (1977), Bubble dynamics and cavitation Fluids, Ann Rev Mech, 9, 145, doi.org/10.1146/annurev.fl.09.010177.001045 ; Thorneycroft (1895), Torpedo - boat destroyers Civil Engineers, Inst, 51. ; Frobenius (2003), Threedimensional , unsteady cavitation effects on a single hydrofoil and in a radial pump - measurements and numerical simulations , part two : numerical simulation In th Osaka, Proc Int Symp, 5. ; Park (2009), Multiphase flow analysis of cylinder using a new cavitation model In th, Proc Int Symp Ann Arbor, 7. ; Rayleigh (1917), On the pressure developed in a liquid during the col lapse of a spherical cavity, Philosoph Mag, 34, 94. ; Saito (2003), Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil In th Osaka, Proc Int Symp, 5.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×