Details

Title

Evaluation method of single blow experiment for the determination of heat transfer coefficient and dispersive Peclet number

Journal title

Archives of Thermodynamics

Yearbook

2015

Issue

No 4 December

Authors

Keywords

heat exchanger ; single blow experiment ; evaluation method ; dispersion model

Divisions of PAS

Nauki Techniczne

Coverage

3-24

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2015[2015.01.01 AD - 2015.12.31 AD]

Type

Artykuły / Articles

Identifier

DOI: 10.1515/aoter-2015-0029

Source

Archives of Thermodynamics; 2015; No 4 December; 3-24

References

LuoX (2001), The single - blow transient testing technique considering longitudinal core conduction and fluid dispersion Heat Transfer, Mass, 121. ; HeggsP (1988), Single - blow experimental prediction of heat transfer coefficients a comparison of four commonly used techniques, Exp Therm Fluid Sci, 1, 243, doi.org/10.1016/0894-1777(88)90003-9 ; RoetzelW (2003), On the application of the Wilson plot technique Heat, Technol, 21, 125. ; RoetzelW (2012), Evaluation of residence time measurements on heat exchangers for the determination of dispersive Peclet numbers In th on Heat Transfer and Renewable Sources of Revised and extended version : Arch, Proc Int Symp Energy Thermodyn, 14, 219, doi.org/10.2478/aoter-2014-0016(accessedonDec.2014) ; RoetzelW (2011), New axial dispersion model for heat exchanger design Heat Transfer, Mass, 1009. ; RoetzelW (1999), Dynamic behaviour of heat exchangers WIT, Mech. ; Wärmeatlas (2013), VDI, Auflage, 11. ; NaRanongC (2012), Unity Mach number axial dispersion model for heat exchanger design th European Thermal Sciences Conf In http dx doi org, Phys Conf Ser, 6, doi.org/10.1088/1742-6596/395/1/012052

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×