Details

Title

Pyoverdine Production in Pseudomonas Fluorescens UTPF5 and its Association with Suppression of Common Bean Damping off Caused by Rhizoctonia Solani (Kühn)

Journal title

Journal of Plant Protection Research

Yearbook

2010

Volume

vol. 50

Issue

No 1

Authors

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Committee of Plant Protection PAS ; Institute of Plant Protection – National Research Institute

Date

2010

Identifier

DOI: 10.2478/v10045-010-0013-5 ; ISSN 1427-4345 ; eISSN 1899-007X

Source

Journal of Plant Protection Research; 2010; vol. 50; No 1

References

Alabouvette C. (1996), Soil Biochemistry, 371. ; Banaei M. (2005), The Soils of Iran, New Achievements in Perception, Managements and Use, 481. ; Becker J. (1988), Role of siderophores in suppression of <i>Pythium</i> species and production of increased-growth response of wheat by fluorescent pseudomonads, Phytopathology, 78, 778. ; Bergey D. (1994), Bergey's Manual of Determinative Bacteriology, 787. ; Budzikiewicz H. (1997), Siderophores of fluorescent pseudomonads, Z. Naturforsch, 52, 713. ; Buysens S. (1996), Involvement of pyochelin and pyoverdin in suppression of pythium-induced damping-off of tomato by <i>Pseudomonas aeruginosa</i> 7NSK2, Appl. Environ. Microbiol, 62, 865. ; Crowley D. (2006), Iron Nutrition in Plants and Rhizospheric Microorganisms, 169. ; Das A. (2006), Microbial Siderophores, 1. ; M. De Villegas (2006), Microbial Siderophores, 165. ; Duijff B. (1993), Siderophore- mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent <i>Pseudomonas</i> spp, Neth. Plant Pathol, 99, 277. ; Glick B. (1995), The enhancement of plant-growth by free living bacteria, Can. J. Microbiol, 41, 109. ; Guillermo C. (2005), A spectro-photometric method to determine the siderophore production by strains of fluorescent Pseudomonas in the presence of copper and iron, Microchem. J, 81, 35. ; Hofte M. (1991), Pyoverdin production by the plant growth beneficial <i>Pseudomonas</i> strain 7NSK2: Ecological significance in soil, Plant Soil, 130, 249. ; Keel C. (1989), Iron sufficiency, a prerequisite for the suppression of tobacco black root-rot by <i>Pseudomonas fluorescens</i> strain CHA0 under gnotobiotic conditions, Phytopathology, 79, 584. ; Kim D. (1997), Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage, Phytopathology, 87, 551. ; King E. (1954), Two simple media for the demonstration of pyocyanin and fluorescin, J. Lab. Clin. Med, 44, 301. ; Kloepper J. (1980), <i>Pseudomonas</i> siderophores: a mechanism explaining disease-suppressive soils, Curr. Microbiol, 4, 317. ; Kumar N. (2008), Diverse mechanisms adopted by fluorescent <i>Pseudomonas</i> PGC2 during the inhibition of <i>Rhizoctonia solani</i> and <i>Phytophthora capsici</i>, World J. Microbiol. Biotechnol, 24, 4, 581. ; Lemanceau P. (1992), Effect of pseudobactin 358 production by <i>Pseudomonas putida</i> WCS358 on suppression of fusarium wilt of carnations by nonpathogenic <i>Fusarium oxysporum</i> Fo47, Appl. Environ. Microbiol, 58, 2978. ; Lemanceau P. (2006), Microbial Siderophores, 165. ; Leong J. (1986), Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens, Annu. Rev. Phytopathol, 24, 187. ; Maurhofer M. (1994), Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing <i>Pseudomonas fluorescens</i> strain CHA0: Influence of the gacA gene and of pyoverdine production, Phytopathology, 84, 139. ; Mercado-Blanco J. (2007), Interactions between plants and beneficial <i>Pseudomonas</i> spp. exploiting bacterial traits for crop protection, Antonie van Leeuwenhoek, 92, 4, 367. ; Meyer J. (1978), The fluorescent pigment of <i>Pseudomonas fluorescens</i>: Biosynthesis, purification and physicochemical properties, J. Gen. Microbiol, 107, 319. ; Meyer J. (1998), Siderotyping of fluorescent pseudomonads: characterization of pyoverdines of <i>Pseudomonas fluorescens</i> and <i>Pseudomonas putida</i> strains from Antarctica, Microbiology, 144, 3119. ; Nielsen M. (1999), Chitinolytic activity of <i>Pseudomonas fluorescens</i> isolates from barley and sugar beet rhizosphere, FEMS Microbiol. Ecol, 30, 3, 217. ; O'Sullivan D. (1992), Traits of fluorescent <i>Pseudomonas</i> spp. involved in suppression of plant root pathogens, Microbiol. Mol. Biol. Rev, 56, 662. ; Scher F. (1982), Effect of <i>Pseudomonas putida</i> and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology, 72, 1567. ; Schippers B. (1987), Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices, Annu. Rev. Phytopathol, 25, 339. ; Slinninger P. (1996), Effect of growth culture physiological state, metabolites and formulation on the viability, phytotoxicity and efficacy of the take-all biocontrol agent <i>Pseudomonas fluorescens</i> 2-79 stored encapsulated on wheat seeds, Appl. Microbiol. Biotechnol, 45, 391. ; Thomashow L. (1990), Role of antibiotics and siderophores in biocontrol of take-all disease of wheat, Plant Soil, 129, 93. ; R. Van Peer (1990), Control of Fusarium wilt in carnation grown on rockwool by <i>Pseudomonas</i> sp. strain WCS417r and by FeEDDHA. Neth, J. Plant Pathol, 56, 119. ; Visca P. (2007), Pyoverdine siderophores: from biogenesis to biosignificance, Trends Microbiol, 15, 22. ; Vurro M. (2006), An Ecological and Societal Approach to Biological Control, 257. ; Weller D. (1983), Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads, Phytopathology, 78, 463.
×