Applied sciences

Archives of Thermodynamics


Archives of Thermodynamics | 2013 | No 2 June |

Download PDF Download RIS Download Bibtex


Technology advancements entail a necessity to remove huge amounts of heat produced by today’s electronic devices based on highly integrated circuits, major generators of heat. Heat transfer to boiling liquid flowing through narrow minichannels is a modern solution to the problem of heat transfer enhancement. The study was conducted for FC-72 boiling in a rectangular, vertical and asymmetrically heated minichannel that had depths of 0.5-1.5 mm, a width of 20 mm and a length of 360 mm. The heat flux increased and decreased within the range of 58.3-132.0 kWm−2, the absolute pressure ranged from 0.116 to 0.184 MPa and the mass flux was 185-1139.2 kgm−2s−1. The boiling process took place on a flat vertical heating surface made of Haynes-230 0.1 mm thick acid-proof rolled plate with the surface roughness of 121 μm.

Go to article

Authors and Affiliations

Robert Kaniowski
Mieczysław Poniewski
Download PDF Download RIS Download Bibtex


In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.

Go to article

Authors and Affiliations

Paweł Ziółkowski
Janusz Badur
Witold Zakrzewski
Oktawia Kaczmarczyk
Download PDF Download RIS Download Bibtex


In the present paper, the one-dimensional model for heat and mass transfer in fixed coal bed was proposed to describe the thermal and flow characteristics in a coke oven chamber. For the purpose of the studied problem, the analysis was limited to the calculations of temperature field and pyrolytic gas yield. In order to verify the model, its theoretical predictions for temperature distribution during wet coal charge carbonization were compared with the measurement results found in the literature. In general, the investigation shows good qualitative agreement between numerical and experimental data. However, some discrepancy regarding the temperature characteristics at the stage of evaporation was observed.

Go to article

Authors and Affiliations

Dariusz Kardaś
Sylwia Polesek-Karczewska
Izabela Wardach-Święcicka
Arkadiusz Grucelski
Sławomir Stelmach
Download PDF Download RIS Download Bibtex


The aim of this work was to investigate the heat and mass transfer during thermal decomposition of a single solid fuel particle. The problem regards the pyrolysis process which occurs in the absence of oxygen in the first stage of fuel oxidation. Moreover, the mass transfer during heating of the solid fuels is the basic phenomenon in the pyrolysis-derived alternative fuels (gas, liquid and solid phase) and in the gasification process which is focused on the generation of syngas (gas phase) and char (solid phase). Numerical simulations concern pyrolysis process of a single solid particle which occurs as a consequence of the particle temperature increase. The research was aimed at an analysis of the influence of particle physical properties on the devolatilization process. In the mathematical modeling the fuel grain is treated as an ideal sphere which consists of porous material (solid and gaseous phase), so as to simplify the final form of the partial differential equations. Assumption that the physical properties change only in the radial direction, reduces the partial derivatives of the angular coordinates. This leads to obtaining the equations which are only the functions of the radial coordinate. The model consists of the mass, momentum and energy equations for porous spherical solid particle heated by the stream of hot gas. The mass source term was determined in the wide range of the temperature according to the experimental data. The devolatilization rate was defined by the Arrhenius formula. The results of numerical simulation show that the heating and devolatilization time strongly depend on the physical properties of fuel. Moreover, proposed model allows to determine the pyrolysis process direction, which is limited by the equilibrium state.

Go to article

Authors and Affiliations

Izabela Wardach-Święcicka
Dariusz Kardaś
Download PDF Download RIS Download Bibtex


The paper presents the adaptation of the modified pulse method for investigating temperature characteristics of thermal diffusivity in the vicinity of the second-order phase transition points. The principle of the adaptation consists in the modified in relation to the original method, development of the characteristics of temperature changes between boundary surfaces of a flat-parallel specimen after the laser shot onto its front surface. The application of this adaptation was illustrated with investigation into thermal diffusivity of nickel (99.9% wt) in the temperature range of 20-380◦C. In all cases the measurement error was less than 3%, and the averaging interval for the measured values of thermal diffusivity was not greater than 1.2 K.

Go to article

Authors and Affiliations

Janusz Terpiłowski
Robert Szczepaniak
Grzegorz Woroniak
Rafał Rudzki

Editorial office

Honorary Editor
Wiesław Gogół, Warsaw University of Technology, Poland
Jarosław Mikielewicz, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Dariusz Mikielewicz, Gdansk University of Technology, Poland

Deputy Editors
Piotr Lampart, The Szewalski Institute of Fluid Flow Machinery PAS, Poland
Marian Trela, The Szewalski Institute of Fluid Flow Machinery PAS, Poland

Members of Editorial Commitee
Roman Domanski, Warsaw University of Technology, Poland
Andrzej Ziębik, Technical University of Silesia, Poland
Ryszard Białecki, Silesian University of Technology, Poland

Managing Editor
Jarosław Frączak, The Szewalski Institute of Fluid Flow Machinery PAS, Poland

International Advisory Board
J. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University,  Durham, USA
W. Blasiak, Royal Institute of Technology,  Stockholm, Sweden
G. P. Celata, ENEA,  Rome, Italy
M. W. Collins, South Bank University,  London, UK
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
D. Jackson, University of Manchester, UK
S. Michaelides, University of North Texas, Denton, USA
M. Moran, Ohio State University,  Columbus, USA
W. Muschik, Technische Universität, Berlin, Germany
I. Müller, Technische Universität, Berlin, Germany
V. E. Nakoryakov, Institute of Thermophysics, Novosibirsk, Russia
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
M.R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA


Wydawnictwo IMP

The Szewalski Institute of Fluid Flow Machinery PAS

Fiszera 14, 80-952 Gdańsk, Poland

telephone: +48 58 5225 141, fax: +48 58 3416 144




Instructions for authors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The language of the papers is English. No paper should exceed the length of 25 pages. All pages should be numbered. The plan and form of the papers should be as follows:

1. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please show the corresponding author. The heading should be followed by Abstract of maximum 15 typewritten lines.

2. More important symbols used in the paper can be listed in Nomenclature, placed below Summary and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg
The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should expressed in SI units.

3. The equations should be each in a separate line. The numbers of the equations should run on, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the right-hand side of the page.
4. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa ) should be avoided wherever possible.

5. Computer-generated figures should be produced using pretty bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only, the relevant explanations given below in the caption.
6. The figures, including photographs, diagrams etc., should be numbered with Arabic numerals in the same order in which they appear in the text.

7. Computer files on an enclosed disc or sent by e-mail to the Editorial Office are welcome. The manuscript should be written as a Word file – ¤:doc or LATEX file –¤:tex.
8. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:
(a) for books: the publishing house and the place and year of publication, for example:
`1` Holman J.P.: Heat Transfer. McGraw-Hill, New York 1968.
(b) for journals: the name of the journal, volume (Arabic numerals in bold), year of publication (in round brackets), number and, if appropriate, numbers of relevant pages, for example: 
`2` Rizzo F.I., Shippy D.I.: A method of solution for certain problems of transient heat conduction.
AIAA Journal 8(1970), No. 11, 2004–2009.
9. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication.

This page uses 'cookies'. Learn more