Applied sciences

Archive of Mechanical Engineering


Archive of Mechanical Engineering | 2011 | vol. 58 | No 3 |

Download PDF Download RIS Download Bibtex


This paper presents the results of Pilot Assisting Module research performed on two light aircraft flight simulators developed in parallel at Brno University of Technology, Czech Republic, and Rzeszow University of Technology, Poland. The first simulator was designed as an open platform for the verification and validation of the advanced pilot/aircraft interface systems and inherited its appearance from the cockpit section of the Evektor SportStar. The second flight simulator, the XM-15, has been built around the cockpit of a unique agriculture jet Belfegor. It introduced a system architecture that supports scientific simulations of various aircraft types and configurations, making it suitable for conceptual testing of Pilot Assisting Module. The XM-15 was initially designed to support research on advanced flight control systems, but due to its continuing modernization it evolved into a hardware-in-the-loop test-bed for electromechanical actuators and autopilot CAN based controller blocks. Pilot-in-the-loop experiments of proposed Pilot Assisting Module revealed favorable operational scenarios, under which the proposed system reduces the cockpit workload during single pilot operations.

Go to article

Authors and Affiliations

Peter Chudy
Pawel Rzucidlo
Download PDF Download RIS Download Bibtex


Commonly used computations of basic rating life of a bearing system are based on the ISO 281:1990 standard. These computations include dynamic load capacity of a given bearing, its effective load and average rotational speed, whereas they omit distribution of external load acting upon particular rolling parts depending, among other things, on: - displacement in bearing (displacements in three directions and declination in two planes), - slackness in bearings. The aim of the presented theoretical research is to solve a problem of fatigue life of a ball bearing taking into consideration displacement in bearing resulting from elasticity of a three-bearing shaft, elasticity of bearings and their internal slackness.

Go to article

Authors and Affiliations

Jarosław Kaczor
Download PDF Download RIS Download Bibtex


This paper presents the bases of a new method of monitoring technical condition of turbomachine blades during their operation. The method utilizes diagnostic models such as a quotient of amplitude amplification and a phase shift of diagnostic signal y(t) which is a result of blade operation as well as a signal x(t) of blade environment while a blade tip approaches a sensor, amplitude amplification and phase shift of these signals while the blade tip moves away from the sensor. The adopted diagnostic models indirectly take into account the existing environment of a blade, represented by the signal x(t), without the need to measure it. Thus, the model is sensitive to the changes in technical condition of blades and practically intensive to a change in environment. The suggested method may prove very important in diagnostics of rotor blades during turbomachines operation (compressors, turbines etc.).

Go to article

Authors and Affiliations

Paweł Lindstedt
Rafał Grądzki
Download PDF Download RIS Download Bibtex


This paper contains the full way of implementing a user-defined hyperelastic constitutive model into the finite element method (FEM) through defining an appropriate elasticity tensor. The Knowles stored-energy potential has been chosen to illustrate the implementation, as this particular potential function proved to be very effective in modeling nonlinear elasticity within moderate deformations. Thus, the Knowles stored-energy potential allows for appropriate modeling of thermoplastics, resins, polymeric composites and living tissues, such as bone for example. The decoupling of volumetric and isochoric behavior within a hyperelastic constitutive equation has been extensively discussed. An analytical elasticity tensor, corresponding to the Knowles stored-energy potential, has been derived. To the best of author's knowledge, this tensor has not been presented in the literature yet. The way of deriving analytical elasticity tensors for hyperelastic materials has been discussed in detail. The analytical elasticity tensor may be further used to develop visco-hyperelastic, nonlinear viscoelastic or viscoplastic constitutive models. A FORTRAN 77 code has been written in order to implement the Knowles hyperelastic model into a FEM system. The performace of the developed code is examined using an exemplary problem.

Go to article

Authors and Affiliations

Cyprian Suchocki

Editorial office


Prof. Marek Wojtyra, Warsaw University of Technology, Poland


Editorial Board

Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland

Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland

Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany

Prof. Peter Eberhard, University of Stuttgart, Germany

Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada

Prof. Janusz Frączek, Warsaw University of Technology, Poland

Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Andrzej J. Nowak, Silesian University of Technology, Poland

Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom

Prof. Jerzy Sąsiadek, Carleton University, Canada

Prof. Jacek Szumbarski, Warsaw University of Technology, Poland

Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland

Prof. Günter Wozniak, Chemnitz University of Technology, Germany


Assistant to the Editor

Małgorzata Broszkiewicz, Warsaw University of Technology, Poland


Editorial Advisory Board

Prof. Alberto Carpinteri, Politecnico di Torino, Italy

Prof. Fernand Ellyin, University of Alberta, Canada

Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China

Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece

Prof. Gregory Glinka, University of Waterloo, Ontario, Canada

Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania

Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal

Prof. Andrzej Neimitz, Kielce University of Technology, Poland

Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France

Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France

Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France

Prof. Jan Ryś, Cracow University of Technology, Poland

Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,

Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland

Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland

Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany

Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland


Language Editor

Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland




Editorial Office:

Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology

Nowowiejska 24, Room 132, 00-665 Warsaw, Poland

Phone:  (+48) 22 234 7448, fax: (+48) 22 628 25 87,


Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at:

More detailed instructions for Authors can be found there.

Open Access policy

Archive of Mechanical Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0.

Archive of Mechanical Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0

This page uses 'cookies'. Learn more