@ARTICLE{Falaciński_Paweł_Filtration, author={Falaciński, Paweł}, volume={Vol. 66}, number={No 4}, journal={Archives of Civil Engineering}, pages={413-428}, howpublished={online}, publisher={WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES}, abstract={The research paper presents the results of hydraulic conductivity, pore structure, phase composition and microstructural tests of hardening slurries prepared using Portland cement, bentonite, water and fluidized-bed ashes coming from hard coal and lignite combustion. The slurries were subjected to long-term (210 days) exposure to the filtering action of an environment strongly aggressive to a cement binder. A sulphate solution 2- with sodium content of SO4 2- = 6700 mg/l was applied, which modelled sulphate aggression. The comparative base were samples subjected to filtration in tap water (neutral environment). The test covered dependencies between hydraulic conductivity k10 (filtration coefficient) and the parameters characterizing porous structure in the slurry, as well as the impact of an aggressive medium on slurry tightness (its porosity and hydraulic conductivity). Changes in the phase composition and slurry microstructure were analysed in terms of its corrosion resistance to the action of sulphate aggression. Observations from other researchers have been confirmed that the use of fluidized fly-ash addition has a positive effect on increasing the resistance of cement matrix exposed to sulphate aggressiveness.}, type={Article}, title={Filtration Resistance of Hardening Slurries with Fluidized Fly-Ashes under Sulphate Aggression}, URL={http://www.czasopisma.pan.pl/Content/118218/PDF/24_ACE-00092%20poprawiony-ok_B5.pdf}, doi={10.24425/ace.2020.135229}, keywords={hardening slurries, cut-off walls, sulphate aggression, fluidal fly-ashes, circular economy}, }