@ARTICLE{Garbacz-Klempka_A._Microstructure_2016, author={Garbacz-Klempka, A. and Tęcza, G.}, number={No 4}, journal={Archives of Foundry Engineering}, howpublished={online}, year={2016}, publisher={The Katowice Branch of the Polish Academy of Sciences}, abstract={Widely used in the power and mining industry, cast Hadfield steel is resistant to wear, but only when operating under impact loads. Components made from this alloy exposed to the effect of abrasion under load-free conditions are known to suffer rapid and premature wear. To increase the abrasion resistance of cast high-manganese steel under the conditions where no dynamic loads are operating, primary titanium carbides are formed in the process of cast steel melting, to obtain in the alloy after solidification and heat treatment, the microstructure composed of very hard primary carbides uniformly distributed in the austenitic matrix of a hardness superior to the hardness of common cast Hadfield steel. Hard titanium carbides ultimately improve the wear resistance of components operating under shear conditions. The measured microhardness of the as-cast matrix in samples tested was observed to increase with the increasing content of titanium and was 380 HV0.02 for the content of 0.4%, 410 HV0.02 for the content of 1.5% and 510 HV0.02 for the content of 2 and 2.5%. After solution heat treatment, the microhardness of the matrix was 460÷480 HV0.02 for melts T2, T3 and T6, and 580 HV0.02 for melt T4, and was higher than the values obtained in common cast Hadfield steel (370 HV0.02 in as-cast state and 340÷370 HV0.02 after solution heat treatment). The measured microhardness of alloyed cementite was 1030÷1270 HV0.02; the microhardness of carbides reached even 2650÷4000 HV0.02.}, type={Artykuły / Articles}, title={Microstructure of Cast High-Manganese Steel Containing Titanium}, URL={http://www.czasopisma.pan.pl/Content/101947/PDF/afe-2016-0103.pdf}, doi={10.1515/afe-2016-0103}, keywords={Innovative foundry technologies and materials, Cast high-manganese steel, Primary carbides, Microstructure, Microhardness}, }