Nauki Techniczne

Archives of Thermodynamics

Zawartość

Archives of Thermodynamics | 2019 | vol. 40 | No 4 |

Abstrakt

In this work, steady flow-field and heat transfer through a copper-water nanofluid around a rotating circular cylinder, dissipating uniform heat flux, with a constant non-dimensional rotation rate varying from 0 to 5 was investigated numerically using a finite-volume method for Reynolds numbers from the range 10–40. Furthermore, the range of nanoparticle volume fractions considered is 0–5%. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to increase with increasing the nanoparticle volume fractions and decrease with increasing value of the rotation rate.

Przejdź do artykułu

Autorzy i Afiliacje

Rafik Bouakkaz
Abded El Ouahed Ouali
Yacine Khelili
Salhi Faouzi
Ilyes Tiauiria

Abstrakt

Exergy analysis is a powerful thermodynamic tool and it helps in computing the actual output of a system. It helps the researchers to optimize the roughened solar air heater design to compensate the present and also the future needs. In this study, investigation on exergetic performance evaluation of a solar air heater with W-shaped roughened absorber surface analytically by employing mathematical model and the results obtained are compared with smooth plate solar air heater under same operating conditions. The exergetic efficiency curves has been plotted as a function of different values of Reynolds number and temperature rise parameter for different roughness parameters. The maximum augmentation in the exergetic efficiency of the solar air heater with W-shaped roughened surface as compared to solar air heater with smooth surface has been obtained as 51% corresponding to the relative roughness height of 0.03375 and the rib angle of attack about 60◦. Based on the exergetic efficiency the suitable design parameters of solar air heater with W-shaped roughened are determined.

Przejdź do artykułu

Autorzy i Afiliacje

Sumer Singh Patel
Atul Lanjewar

Abstrakt

Consumption of energy is one of the important indicators in developing countries, but a lot of companies from the energy sector have to cope with three key challenges, namely how to reduce their impact on the environment, how to ensure the low cost of the energy production and how to improve the system overall performance? For Polish energy market, the number of challenges is greater. The growing demand for electricity and contemporary development of nuclear power technology allow today’s design, implement new solutions for high energy conversion system low unit cost for energy and fuel production. In the present paper, numerical analysis of modular high-temperature nuclear reactor coupled with the steam cycle for electricity production has been presented. The analysed system consists of three independent cycles. The first two are high-temperature nuclear reactor cycles which are equipped with two high-temperature nuclear reactors, heat exchangers, blowers, steam generators. The third cycle is a Rankine cycle which is equipped with up to four steam turbines, that operate in the heat recovery system. The analysis of such a system shows that is possible to achieve significantly greater efficiency than offered by traditional nuclear reactor technology.

Przejdź do artykułu

Autorzy i Afiliacje

Michał Dudek
Marek Jaszczur
Zygmunt Kolenda

Abstrakt

In this study, X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry (DSC) method were used to analyze the main characteristics of sweet potato starch, and to analyze the thermal degradation process of sweet potato starch. Specifically, X-ray diffraction to study its structure, thermogravimetric analysis to study the thermal degradation kinetics, and differential scanning calorimetry to study the thermogram of sweet potato starch. The thermal decomposition kinetics of sweet potato starch was examined within different heating rates in nitrogen atmosphere. Different models of kinetic analysis were used to calculate the activation energies using thermogravimetric data of the thermal degradation process. Activation energies obtained from Kissinger, Flynn-Wall- Ozawa, and Šatava-Šesták models were 173.85, 174.87 and 174.34 kJ/mol, respectively. The values of activation energy indicated that the thermal degradation of the sweet potato starch was a single reaction mechanism or the combination of multi-reaction mechanisms. The differential scanning calorimetry analysis show that two decomposition stages were presented: the first at a low temperature involves the decomposition of long chain; and the second at a high temperature represents the scission of glucose ring. This information was helpful to design the processing process of many natural polymers. Thermogravimetric Fourier transform-infrared (TG–FTIR) analysis showed that the main pyrolysis products included water, methane, carbon dioxide, ammonia, and others.

Przejdź do artykułu

Autorzy i Afiliacje

Ying Liu
Liutao Yang
Yingzhe Zhang

Abstrakt

This paper presents the results of thermodynamic analysis of the crude distillation units of two refineries in Nigeria. The analysis was intended to assess the thermodynamic efficiencies of the refineries and proffer methods of improving the efficiencies. Presented results show the atmospheric distillation units of the refineries have 33.3% and 31.6% exergetic efficiencies and 86.5% and 74.6% energetic efficiencies, respectively. Modifications of the operating and feed conditions of the refineries resulted in increased exergetic efficiencies for as much as 62.3% and 38.7% for the refineries. Thermodynamic analysis of the refineries can bring about efficiency improvement and effectiveness of the refineries.

Przejdź do artykułu

Autorzy i Afiliacje

Funmilayo Nihinlola Osuolale
Ambrose Nwora Anozie

Abstrakt

The objective of present work is to predict the thermal performance of wire screen porous bed solar air heater using artificial neural network (ANN) technique. This paper also describes the experimental study of porous bed solar air heaters (SAH). Analysis has been performed for two types of porous bed solar air heaters: unidirectional flow and cross flow. The actual experimental data for thermal efficiency of these solar air heaters have been used for developing ANN model and trained with Levenberg-Marquardt (LM) learning algorithm. For an optimal topology the number of neurons in hidden layer is found thirteen (LM-13).The actual experimental values of thermal efficiency of porous bed solar air heaters have been compared with the ANN predicted values. The value of coefficient of determination of proposed network is found as 0.9994 and 0.9964 for unidirectional flow and cross flow types of collector respectively at LM-13. For unidirectional flow SAH, the values of root mean square error, mean absolute error and mean relative percentage error are found to be 0.16359, 0.104235 and 0.24676 respectively, whereas, for cross flow SAH, these values are 0.27693, 0.03428, and 0.36213 respectively. It is concluded that the ANN can be used as an appropriate method for the prediction of thermal performance of porous bed solar air heaters.

Przejdź do artykułu

Autorzy i Afiliacje

Harish Kumar Ghritlahre
Radha Krishna Prasad

Abstrakt

Irreversibility analysis was investigated by using refrigerants R22, R407A, and R407C in window type air conditioner system. The experimental study was conducted at various ambient temperatures and air volumetric flow rates to determine the parameters that cause the energy degradation of the system. The irreversibility was compared with respect to volumetric flow rates of the air passing through evaporator (14.15, 12.74, and 10.618 m3/min) and different ambient temperatures (ranging from 28 ◦C to 39 ◦C dry bulb. Results show that the total irreversibility increases with refrigerant mass flow rate and ambient temperature for the three refrigerants. Additionally, R22 shows the highest irreversibility in low ambient temperature (28 ◦C to 30 ◦C) while R407A shows the lowest one with ambient temperature ranging from 30 ◦C to 36 ◦C. Both tested refrigerants are very good replacement for R22 in terms of irreversibility and energy analysis and these results are more remarkable with R407A.

Przejdź do artykułu

Autorzy i Afiliacje

Ayad Khudhair Al-Nadawi

Abstrakt

Most satellites stationed in space use catalytic propulsion systems for attitude control and orbit adjustment. Hydrazine is consumed extensively as liquid monopropellant, in the thrusters. Catalytic reactor is the most important section in the catalytic thruster. Ammonia and nitrogen gases are produced as a result of complete catalytic decomposition of hydrazine in the reactor, causing an increase in temperature and a rise in specific impulse. Ammonia is subsequently decomposed, leading to nitrogen and hydrogen gases. Decomposition of ammonia leads to a decrease in temperature, molecular weight and specific impulse. The latter phenomenon is unavoidable. The effect of ammonia decomposition on the reactor temperature, molecular weight of gaseous products and conclusively on specific impulse was studied in this article. At adiabatic state, thermodynamic analysis revealed that the maximum and minimum temperatures were 1655 K and 773 K, respectively. The highest molecular weight was obtained at ammonia conversion of zero and the lowest when ammonia conversion was 100%. The maximum specific impulse (305.4 S) was obtained at ammonia conversion of zero and completely conversion of ammonia, the minimum specific impulse (about 213.7 s) was obtained. For specific impulse, the result of thermodynamic calculation in this work was validated by the empirical results.

Przejdź do artykułu

Autorzy i Afiliacje

Shahram Pakdehi
Fatemeh Shirvani
Reihaneh Zolfaghari

Redakcja

Honorary Editor
Wiesław Gogół, Warsaw University of Technology, Poland

Editor-in-Chief
Jarosław Mikielewicz, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Deputy
Marian Trela, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Members of Editorial Commitee
Roman Domanski, Warsaw University of Technology, Poland
Andrzej Ziębik, Technical University of Silesia, Poland

Managing Editor
Jarosław Frączak, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

International Advisory Board
J. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University,  Durham, USA
W. Blasiak, Royal Institute of Technology,  Stockholm, Sweden
G. P. Celata, ENEA,  Rome, Italy
M. W. Collins, South Bank University,  London, UK
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
D. Jackson, University of Manchester, UK
S. Michaelides, University of North Texas, Denton, USA
M. Moran, Ohio State University,  Columbus, USA
W. Muschik, Technische Universität, Berlin, Germany
I. Müller, Technische Universität, Berlin, Germany
V. E. Nakoryakov, Institute of Thermophysics, Novosibirsk, Russia
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
M.R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

Kontakt

IFFM Publishers (Wydawnictwo IMP),

The Szewalski Institute of Fluid-Flow Machinery,
Fiszera 14, 80-952 Gdańsk, Poland,
telephone: +48 58 6995141, fax: +48 58 3416144,
e-mail: jfrk@imp.gda.pl; now@imp.gda.pl

 

 

Instrukcje dla autorów

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The language of the papers is English. No paper should exceed the length of 25 pages. All pages should be numbered. The plan and form of the papers should be as follows:
 

1. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please show the corresponding author. The heading should be followed by Abstract of maximum 15 typewritten lines.

2. More important symbols used in the paper can be listed in Nomenclature, placed below Summary and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg
etc.
The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should expressed in SI units.

3. The equations should be each in a separate line. The numbers of the equations should run on, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the right-hand side of the page.
 
4. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa ) should be avoided wherever possible.

5. Computer-generated figures should be produced using pretty bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only, the relevant explanations given below in the caption.
 
6. The figures, including photographs, diagrams etc., should be numbered with Arabic numerals in the same order in which they appear in the text.

7. Computer files on an enclosed disc or sent by e-mail to the Editorial Office are welcome. The manuscript should be written as a Word file – ¤:doc or LATEX file –¤:tex.
 
8. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:
 
(a) for books: the publishing house and the place and year of publication, for example:
`1` Holman J.P.: Heat Transfer. McGraw-Hill, New York 1968.
 
(b) for journals: the name of the journal, volume (Arabic numerals in bold), year of publication (in round brackets), number and, if appropriate, numbers of relevant pages, for example: 
`2` Rizzo F.I., Shippy D.I.: A method of solution for certain problems of transient heat conduction.
AIAA Journal 8(1970), No. 11, 2004–2009.
 
9. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji