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Design of multivariable fractional order PID controller
using covariance matrix adaptation evolution strategy

SUDALAIANDI SIVANANAITHAPERUMAL and SUBRAMANIAN BASKAR

This paper presents an automatic tuning of multivariable Fractional-Order Proportional,
Integral and Derivative controller (FO-PID) parameters using Covariance Matrix Adaptation
Evolution Strategy (CMAES) algorithm. Decoupled multivariable FO-PI and FO-PID controller
structures are considered. Oustaloup integer order approximation is used for the fractional
integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO) distillation
columns described by Wood and Berry and Ogunnaike and Ray are considered for the design of
multivariable FO-PID controller. Optimal FO-PID controller is designed by minimizing Integral
Absolute Error (IAE) as objective function. The results of previously reported PI/PID controller
are considered for comparison purposes. Simulation results reveal that the performance of FO-
PI and FO-PID controller is better than integer order PI/PID controller in terms of IAE. Also,
CMAES algorithm is suitable for the design of FO-PI / FO-PID controller.

Key words: fractional order controller, PID control, CMAES algorithm, distillation col-
umn

1. Introduction

Fractional order dynamic systems and controllers, based on fractional calculus have
been gaining attention in several applications [1-3]. The idea of using fractional-order
controllers for the dynamic system control is well-addressed by Podlubny [4]. The de-
sign of fractional order controller is also reported by many researchers. Petras presented
a method based on pole distribution of characteristics equation in complex plane [5].
Frequency domain based fractional order controller design for the expected crossover
frequency and phase margin is proposed by Vinegar et al. [6]. Padula et al. have sug-
gested set of rules based on the minimization of the integrated absolute error for tuning
of fractional order PI and PID controllers for a first-order-plus-dead-time model [7]. The
hardware realization of the FO-PID controller is given by Chen et al. [8].

In FO-PID controller, the order of integration and differentiation is of fractional or-
der. Hence, in the design of FO-PID controllers, besides the setting of proportional (KP),
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integral (KI) and differential constant (KD), two more parameters, order of integral frac-
tion (λ) and order of differentiation fraction (µ) are to be set. The optimal design of KP,
KI , KD, (λ) and (µ) to meet the user specification leads to a real parameter optimization
problem.

Recently, Evolutionary Algorithms (EA) like Genetic Algorithms (GA) [9], Particle
Swarm Optimization (PSO) [10], and Differential Evolution (DE) [11], are employed for
the design of the FO-PID controllers for single input single output (SISO) system. Cao et
al. [9] have applied GA to FO-PID optimization problem by minimizing combination of
ITAE and control input for integer order SISO systems. Cao et al. [10] have also applied
PSO to this problem by using IAE along with square of control input as objective for
SISO systems. Biswas et.al [11] have applied DE algorithm by minimizing error between
user specified time response specifications such as peak overshoot, rise time and steady
state error and corresponding obtained values with FO-PID controller.

In real world, most of the industrial processes belong to the category of MIMO sys-
tem which requires MIMO control techniques to improve the performance of the process.
The presence of cross-coupling between plant inputs and outputs complicates the design
of controller for MIMO system as compared to SISO system. The need to simultaneously
adjust multiple control inputs to produce a desired system response is a typical attribute
of MIMO systems. Obviously, this makes the control system development procedure
more difficult.

Recently, Covariance Matrix Adaptation Evolutionary Strategy (CMAES) algorithm
is applied successfully for the optimization test problems [12] and the design of multi-
variable PID controller for MIMO systems [13] and [14].

In this paper, CMAES algorithm is proposed for the design of Multivariable FO-PI
and FO-PID controller for MIMO systems namely binary distillation column described
by Wood and Berry and Ogunnaike and Ray. For comparison purpose, the integer order
PI/PID controller designed by using CMAES and conventional Biggest Log-modulus
Tuning (BLT) method are taken.

This paper is organized as follows: section 2 gives a brief overview of fractional order
systems. Section 3 explains the CMAES algorithm. Section 4 describes the Test Systems
considered. Section 5 presents the CMAES algorithm based design of multivariable FO-
PI / FO-PID controller. Simulation results are given in section 6 and the conclusion in
section7 7.

2. Fractional-order systems

Fractional calculus is a branch of mathematical analysis that deals with real number
power of differential and integral operator. The generalized continuous differ-integrator
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operator is represented as follows

aDq
t =


dq/dtq ℜ(q)> 0

1 ℜ(q) = 0
t∫

a
(dτ)−q ℜ(q)< 0

(1)

where q represents the real order of differ-integrator operator, t is the parameter for
which the differ-integral is taken and a is the lower limit. Various definitions are used
for the general fractional differ-integral, like Grunwald-Letnikov (GL) definition and
Riemann-Liouville (RL) definition. These definitions are explained briefly in [15]. The
GL definition is given as

aDq
t f (t) = lim

h→0
h−q

[ t−a
h ]

∑
j=0

(−1) j

(
q
j

)
f (t − jh) (2)

where [.] means integer part. The time domain of the RL definition is given as

aDq
t f (t) =

1
Γ(m−q)

dn

dtn

t∫
a

f (τ)
(t − τ)q−n+1 dτ (3)

for (m−1 < q < m) and Γ(·) is Euler’s Gamma function.
The Laplace transform of the above RL definition has the following form

∞∫
0

e−st
0Dq

t f (t)dt = sqF(s)−
m−1

∑
p=0

sk
0Dq−p−1

t f (t) |t=0 (4)

for (m−1 < q¬ m), where s denotes the Laplace transform operator. For q < 0 (i.e. the
case of fractional integral) the sum in the right-hand side must be omitted.

2.1. Integer order approximation

For transfer function with fractional order q, the most common way is to approximate
them with usual (integer order) transfer function. To perfectly approximate a fractional
transfer function, an integer transfer function with an infinite number of poles and zeros
is required. For the simulation purpose, it is possible to obtain an approximation with
a finite number of zeros and poles. An oustaloup filter approximation is widely used in
fractional calculus. A generalized filter approximation is given by the transfer function
as

sq ≈ ks

No⊔
b=1

1+(s/wz,b)

1+(s/wp,b)
. (5)
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The approximation is made reasonable in the frequency domain range [wl, wh],
where wl , wh are lower and upper bound of the operating frequency domain. Gain, ks
is regulated to have unit gain at 1 rad/s. The number of poles and zeros (No) is cho-
sen in advance and the desired performance of the approximation depends on the order
of No. Lower order No causes simpler approximation, but may cause ripples in both
gain and phase behaviors. Such ripples can be avoided by increasing the order No, but
the approximation will become computationally burden. The further details about the
approximation can be found in [15].

2.2. Fractional order PID controller

Integer order PID control, commonly known as PID control, offers the simplest and
efficient solution in many real-world control problems. The three term functionality of
PID controller covers treatment of both transient and steady state performances. PID
controllers have been widely used in the industries in process control for several decades.
The reason for the wide popularity is for the simplicity, clear functionality, applicability
and robustness in nature [14]. The transfer function representation of the PID controller
is as follows

GIC(s) = KP +KIs−1 +KDs (6)

FO-PID controllers are described by fractional order differential equations. The mathe-
matical representation of FO-PID in s-domain is given as

GFC(s) = KP +KIs−λ +KDsµ, 0¬ λ,µ¬ 1 (7)

Figure 1. PID controllers with fractional order.

Fig.1 shows the pictorial representation of various controllers. Any point inside the
shaded square represents the fractional order PID controller. The extreme points repre-
sent the integer order controllers.

The design of FO-PID controllers involve the optimal parametrization of KP, KI ,
KD, λ and µ to meet the user specifications for a given process. The design of these
parameters involves the parameter optimization in five-dimensional space for a SISO
system.
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3. Covariance matrix adaptation evolutionary strategy (CMAES)

Evolutionary algorithms like GA, DE and CMAES algorithms differ in selection,
offspring generation and replacement mechanisms. CMAES is a class of continuous
EA that generates new population members from a probability distribution that is con-
structed during the optimization process [12]. One of the key concepts of this algorithm
involves the self-adaptation of learning of correlations between parameters and the
use of the correlations to accelerate the convergence of the algorithm. The adaptation
mechanism of CMAES consists of two parts, 1) the adaptation of the covariance matrix
C and 2) the adaptation of the global step size σ. The covariance matrix C is adapted by
the evolution path Pc and vector difference between the µ best individuals in the current
and previous generation. The algorithm is explained in following steps [12].

Step 1:
Set the parameters cσ, cc, ccov and d to their default values as per Tab. 1.

Step 2:
Set the evolution path P(0)

σ = 0, P(0)
c = 0 and covariance matrix C(0) = I. Choose step

size σ(0) and frame the stopping criteria.

Step 3:
Generate an initial random solution.

Step 4:
The offspring at g+ 1 generation, xg+1

k are sampled from a Gaussian distribution using
covariance matrix and global step size at generation g as given in (8).

x(g+1)
k = zk, zk = N

(
⟨x⟩(g)µ ,σ(g)2

C(g)
)

k = 1, ...,λ (8)

where ⟨x⟩(g)µ = ∑µ
i=1 x(g)i with µ being the selected best individuals from the population,

xg+1
k is k-th offspring (search point) from generation g+ 1, N(x,C) denotes a normally

distributed random vector with mean x and covariance matrix C, λp is the population
size, µp parent number, σ the step size and C covariance matrix at generation g.

Step 5:
Adaptation of global step size σg+1 is based on an evolution path as given in (9-10).

P(g+1)
σ = (1− cσ) ·P(g)

σ +
√

cσ(2− cσ)µe f f .(C(g))
−1
2

(
⟨x⟩(g+2)

µp −⟨x⟩ g
µp

)
σ(g)

. (9)
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The global step size σ(g+1) is determined by

σ(g+1) = σ(g) exp

cσ

d


∥∥∥P(g+1)

σ

∥∥∥
E (∥N(0,I)∥)

−1

 . (10)

The damping factor d can be adapted if maximum iteration number is small.

Step 6:
The covariance matrix adaptation is based on the evolution path P(g+1)

c as follows

P(g+1)
c = (1− cc) ·P(g)

c +
√

cc(2− cc) ·
√

µp
σ(g)

(
⟨x⟩(g+1)

µp −⟨x⟩g
µp

)
, (11)

C(g+1) = (1− ccov) ·C(g)

(12)

+ccov ·

 1
µp P(g+1)

c (P(g+1)
c )T+

(1− 1
µp)

1
µp

µp
∑

i=1

1
σ(g)2

(x(g+1)
i −⟨x⟩(g)µp )(x

(g+1)
i −⟨x⟩(g)µp )

T

 .

Strategy parameter ccov ∈ [0, 1] determines the rate of change of the covariance matrix C.

Step 7:
Repeat Steps 4-6 until the stopping criteria are satisfied.

Table 21. CMAES parameter.

Step size control

cσ =
µe f f +2

D+µe f f +3 , d = 1+2max
(

0,
√

µe f f−1
D+1 −1

)
+ cσ

Covariance matrix adaptation
cc =

4
D+4

ccov =
1

µp
2

(D+
√

2)
2 +
(

1− 1
µp

)
min

(
1, 2µp−1

(D+2)2+µp

)

4. Test of the system

Most of the industrial process belongs to the category of MIMO system, which re-
quires MIMO control techniques to improve the system performance. In order to validate
the performance of the CMAES algorithm on the design of the fractional-order PI/PID
controller two MIMO systems, namely binary distillation column described by Wood
and Berry (WB) [13] (Test system-I) and Ogunnaike and Ray distillation column (OR)
[14] (Test system-II) are considered and their details are given below.
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4.1. Test system–I

A binary distillation column having two inputs and two outputs described by Wood
and Berry is considered for validation. The transfer function of WB process is given
in (13). The transfer function of WB process has first order dynamics and significant
time delays. It has a strong interaction between the inputs and outputs. The inputs are
the reflux flow rate and steam flow rate in the rebolier. The outputs are percentage of
methanol in distillate (XD) and bottom products (XB).

G(s) =

 12.8e−s

1+16.7s
−18.9e−3s

1+21s
6.6e−7s

1+10.9s
−19.4e−3s

1+14s

 . (13)

4.2. Test system–I

Ogunnaike and Ray distillation column (OR) is considered for a 3× 3 system. The
transfer function of OR process is represented by (14).

G(s) =


0.66e−2.6s

6.7s+1
−0.61e−3.6s

8.64s+1
−0.0049e−s

9.06s+1
1.11e−6.5s

3.25s+1
−2.36e−3s

5s+1
−0.01e−1.2s

7.09s+1
−34.68e−9.2s

8.15s+1
46.2e−9.4s

10.9s+1
0.87(11.61s+1)e−s

(3.89s+1)(18.8s+1)

 . (14)

5. CMAES implementation of FO-PI / FO-PID controller

CMAES implementation of multivariable decoupled FO-PI / FO-PID controller for
MIMO test systems is described below. The general representation of decoupled frac-
tional order controller for the test systems considered is given in

GFC(s) =


GFC1(s) · · · 0

...
. . .

...
0 · · · GFCi(s)

 , i = 1,2 . . . ,n (15)

where n is number of system inputs. The transfer function of GFC1(s) is given by
(7). The fractional order integral and derivative are approximated as per (5). The con-
troller approximations made are system order 1 and the bandwidth for the fractional
order controller [1e-4, 1e2]. In order to obtain the optimum performance of FO-PI con-
troller, the parameters of GFCi(s) = {KPi,KIi,λi} are optimized using the CMAES al-
gorithm. Similarly for the FO-PID controller the optimum parameter set of GFCi(s) =
{KPi,KIi,KDi,λi,µi} are determined. The lower and upper bounds of the controller pa-
rameters considered for the systems are given in Tab. 2. Minimization of integral of



242 S. SIVANANAITHA PERUMAL, S. BASKAR

absolute value of error (IAE) given by (16) is considered as the objective function. Error
ei is calculated as per (17)

IAE =

∞∫
0

(|e1(t)|+ |e2(t)|+ ... |en(t)|)dt (16)

ei = ydi − yi, i = 1,2 . . . ,n (17)

where ydi is system desired response and yi is system actual response.
In general, the number of design parameters for a FO-PI design is 3n and for a

FO-PID design is 5n. For example, the ith parameter vector in CMAES algorithm for
FO-PID controller of WB process is Xi = {KP1,KI1,KD1,λ1,µ1,KP2,KI2,KD2,λ2,µ2}.

Table 22. Range of fractional-order controller parameter set [14].

Test system Controller Parameter range

WB
FO-PI

−1¬ KPi,KI i ¬ 1,
−1¬ λi ¬ 0, i = 1,2

FO-PID
−1¬ KP1,KI1,KD1 ¬ 1,

−1¬ λi ¬ 0, 0¬ µi ¬ 1, i = 1,2

OR
FO-PI

−5¬ KPi,KI i ¬ 5,
−1¬ λi ¬ 0 i = 1,2,3

FO-PID
−5¬ KP1,KI1,KD1 ¬ 5,

−1¬ λi ¬ 0, 0¬ µi ¬ 1, i = 1,2

6. Simulation results

Simulations are carried out using a PC Intel Core 2 Duo operating @2.2 GHz with
2 GB RAM. IAE is determined for step response over 150 min and 100 min time du-
ration for Test system-I and Test system-II respectively. For simulating MIMO plants,
MATLAB-SIMULINK software is used. Due to the randomness of the EAs, statistical
performance of the results in 20 trials is reported. For comparison purpose, reported
results of CMAES based PI/PID controller for Test system-I [13] and for Biggest Log-
modulus Tuning (BLT) algorithm based PI controller for Test system-II [14]. The param-
eters employed for the simulations are given in Tab. 3. For fair comparison of results,
maximum number of function evaluations (Fevalmax) is selected as that of [13] for Test
system-I. Original MATLAB codes for CMAES algorithm is taken from the website
[16].
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Table 23. CMAES parameter.

Parameter
Test system-I Test system-II

FO-PI FO-PID FO-PI FO-PID

Design variables (n) 6 10 9 15

Population size 50 50 100 100

Fevalmax 6000 6000 15000 15000

6.1. Design of multivariable FO-PI controller for Test system-I

CMAES algorithm is applied to the design of decoupled multivariable FO-PI con-
troller for Test system-I using IAE as objective. Best FO-PI parameter set and the cor-
responding IAE value in 20 independent trials and reported results of PI controller are
given in Tab. 4. For comparison, reported values of PI controller [13] are also given in
Tabs 4-5.

Table 24. Optimum controller parameters FO-PI controller: Test system-I.

Controller
Optimum parameter set of multivariable PI controller

IAE
KP1 KI1 λ1 KP2 KI2 λ2

PI [13] 0.8485 0.0026 -1 -0.0132 -0.0069 -1 10.4378

FO-PI 0.8760 0.0187 -0.4035 -0.0123 -0.0070 -0.9984 10.2069

Table 25. Statistical performance of FO-PI controller: Test system-I.

Controller Best value Mean value Worst value Standard deviation

PI [13] 10.4378 10.4378 10.4378 0

FO-PI 10.2069 10.2081 10.2088 5e-4

The performance of the proposed FO-PI controller is comparatively better than the
PI controller in terms of IAE. The statistical performance of the proposed controller is
tabulated in Tab. 5. From the Tab. 5, it is clear that CAMES algorithm gives better perfor-
mance and consistency achieving IAE. The convergence characteristics of the CAMES
algorithm is given in Fig. 2. Due to the self learning behavior of CMAES algorithm,
convergence characteristics show large variations during the initial search. Fig. 3 shows
the convergence characteristics of the parameters of the multivariable FOPI controller.
In Fig.3 ‘Lambda’ represents the parameter λ. Figs. 4 and 5 shows the step response
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characteristics of the best multivariable FO-PI controller and PI controller designed by
CMAES.

Figure 2. Convergence characteristics of
CMAES algorithm for multivariable FO-PI
controller: Test system-I.

Figure 3. Convergence characteristics of multivari-
able FO-PI controller parameters-Test system-I.

Figure 4. Step response XB for WB system with
FO-PI controller.

Figure 5. Step response XD for WB system with FO-
PI controller.

6.2. Design of multivariable FO-PID controller for Test system-I

Best FO-PID parameter set and the corresponding IAE value of decoupled multivari-
able FO-PID controller using CMAES algorithm are reported in Tab. 6. For comparison,
reported values of PID controller [13] are also given in Tabs 6-7.
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From the Tab. 6, it is clear that the performance of the proposed FO-PID controller
is better than the PID controller in terms of IAE. The statistical performance of the FO-
PID controller in 20 trials is tabulated in Tab. 7. From the Tab. 7, it is clear that the
statistical performance of the CMAES algorithm based design of FO-PID gives better
performance in consistency achieving good results of IAE. Figs. 6 and 7 show the step
response characteristics of the best multivariable FO-PID controller and PID controller.
From the Figs. 6 and 7, it is clear that the rise time of the response XD and XB are
improved by 13% and 76% with the compromise in the overshoot and settling time. The
improvement in rise time is due to inclusion of parameter µ.

Figure 6. Step response XD for WB system with
FO-PID controller.

Figure 7. Step response XB for WB system with FO-
PID controller.

Table 26. Optimum FO-PID controller parameters: Test system-I.

Controller Parameters IAE

PID [13]

KP1 KI1 KD1 λ1 µ1

9.6824
1.0 0.0025 0.3872 -1 1
KP2 KI2 KD2 λ2 µ2

-0.0332 -0.0073 -0.0909 -1 1

FO-PID

KP1 KI1 KD1 λ1 µ1

8.2549
0.2714 0.0241 0.3217 -0.3092 1.0

KP2 KI2 KD2 λ2 µ2

-0.1373 -0.0138 -0.1413 -1.0 0.5207
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Table 27. Statistical performance of FO-PID controller: Test system-I.

Controller Best value Mean value Worst value Standard deviation

PID [13] 9.6824 10.4451 – 0.7116

FO-PID 8.2549 8.3898 8.4393 0.0711

6.3. Design of multivariable FO-PI/FO-PID controller for Test system-II

Best FO-PI/FO-PID parameters and their corresponding IAE value are reported in
Tab. 8. For comparison, reported results of PI controller using BLT method [14] and
CMAES based PI/PID controllers are also reported in Tabs 8-9. From the Tab. 8, it is
clear that the performance of the proposed decoupled multivariable FO-PI / FO-PID con-
troller is comparatively better than the PI/PID controller designed by conventional BLT
method and CMAES algorithm. From the statistical performance of the proposed con-
troller as given in Tab. 9, it is clear that the CMAES algorithm gives better performance
and consistency in achieving better results for multivariable systems.

Fig. 8 shows the convergence characteristics of the CMAES algorithm based FO-
PID controller. The initial higher values of IAE during generations are omitted for clar-
ity purposes. Fig. 9 shows the convergence characteristics of the multivariable FO-PID
controller parameters. In Fig. 9 ‘Mu’ represents the parameter µ.

Figure 8. Convergence characteristics of CMAES algorithm for multivariable FO-PID controller: Test
system-II.

Figs. 10, 11 and 12 shows the step response of the best multivariable FO-PI con-
troller. FO-PI controller simulation results show the improvement in both in rise time
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Figure 9. Convergence characteristics of parameters of the multivariable FO-PID controller: Test system-II.

Figure 10. Step response y1 for OR system with
FO-PI controller.

Figure 11. Step response y2 for OR system with FO-
PI controller.

and settling time. Figs. 13, 14 and 15 show the step response of the best multivariable
FO-PID controller. Simulation results of FO-PID controller improves the rise time by
33%, overshoot by 9% and settling time by 26% than CMAES based PID controller for
output response y2.
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Figure 12. Step response y3 for OR system with
FO-PI controller.

Figure 13. Step response y1 for OR system with FO-
PID controller.

Figure 14. Step response y2 for OR system with
FO-PID controller.

Figure 15. Step response y3 for OR system with FO-
PID controller.

7. Conclusion

Decoupled multivariable fractional order PI/PID controller based on CMAES algo-
rithm is designed in this paper. Oustaloup integer order approximation is considered for
the approximations of fractional order integrals and derivatives. Decoupled multivariable
FO-PI and FO-PID controller are designed for MIMO distillation columns namely WB
and OR systems. Reported results of CMAES algorithm based PI and PID controller
for WB system and PI controller by BLT method for OR system are considered for
comparison. The FO-PI / FO-PID controller designed by the CMAES algorithm exhibits
minimum IAE as compared to PI/PID controller. Also, the proposed FO-PI/FO-PID con-
troller achieves favorable closed loop performance.
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Table 28. Optimum Controller Parameters: Test system-II.

Parameters PI PI FO-PI PID FO-PID

Method BLT [14] CMAES CMAES CMAES CMAES

KP1 1.5070 -0.3323 -0.3663 -0.3755 -0.3717

KI1 0.0920 0.1686 0.2178 0.2225 0.6211

KD1 – – – 2.5362 0.2264

λ1 -1 -1 -0.9206 -1 -0.6811

µ1 – – – 1 0.3719

KP2 -0.2930 -0.5964 -0.6279 -0.5132 -0.4813

KI2 -0.0163 -0.1320 -0.1456 -0.1791 -1.1370

KD2 – – – -0.3064 -0.7118

λ2 -1 -1 -0.9886 -1 -0.3678

µ2 – – – 1 0.9731

KP3 2.6326 5.0000 4.9996 5.0000 4.9232

KI3 0.3975 3.1980 4.9998 5.0 5.0

KD3 – – – 5.0000 1.0540

λ3 -1 -1 -0.7971 -1 -1.0

µ3 – – – 1 0.4218

IAE 245.4433 62.1182 61.0379 48.9158 43.1575

Table 29. Statistical performance: Test system-II.

Controller Best value Mean value Worst value Standard deviation

PI 62.1182 62.1182 62.1182 7.2e-7

FO-PI 61.0379 61.0422 61.0450 2.3e-3

PID 48.9158 48.9158 48.9158 5.3e-6

FO-PID 43.1575 43.8588 44.4412 0.4127
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