Characterization of nanostructured bulk cobalt triantimonide doped with tellurium and indium prepared by pulsed plasma in liquid method

R. ZYBAŁA1,2*, M. SCHMIDT2, K. KASZYCA2, M. CHMIELEWSKI2, M.J. KRUSZEWSKI3, M. JASIŃSKI4, M. RAJSKA5, and Ł. CIUPIŃSKI3

1 University Research Centre “Functional Materials”, Warsaw University of Technology, 14 Woloska St., 02-507 Warsaw, Poland;
2 Łukasiewicz Research – Network Institute of Electronic Materials Technology, 133 Wólczyńska St., 01-919 Warsaw, Poland;
3 Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland;
4 Institute of Technology, Pedagogical University of Krakow, 2 Podchorążych St., 30-084 Krakow, Poland;
5 Department of Inorganic Chemistry, Faculty of Materials Science and Ceramic, AGH University of Science and Technology, Krakow, 3 Mickiewieza Av., 30-059, Poland.

Abstract. One of the ways to decrease thermal conductivity is nano structurization. Cobalt triantimonide (CoSb3) samples with added indium or tellurium were prepared by the direct fusion technique from high purity elements. Ingot were pulverized and re-compacted to form electrodes. Then, the pulsed plasma in liquid (PPL) method was applied. All materials were consolidated using rapid spark plasma sintering (SPS). For the analysis, methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) with a laser flash apparatus (LFA) were used. For density measurement, the Archimedes’ method was used. Electrical conductivity was measured using a standard four-wire method. The Seebeck coefficient was calculated to form measured Seebeck voltage in the sample placed in a temperature gradient. The preparation method allowed for obtaining CoSb3 nanomaterial with significantly lower thermal conductivity (10 Wm⁻¹K⁻¹ for pure CoSb3 and 3 Wm⁻¹K⁻¹ for the nanostructured sample in room temperature (RT)). The size of crystallites (from SEM observations) in the powders prepared was about 20 nm, joined into larger agglomerates. The Seebeck coefficient, α, was about −200 µVK⁻¹ in the case of both dopants, In and Te, in microsized material and about −400 µVK⁻¹ for the nanomaterial at RT. For pure CoSb3, α was about 150 µVK⁻¹ and it stood at −50 µVK⁻¹ for nanomaterial at RT. In bulk nanomaterial samples, due to a decrease in electrical conductivity and inversion of the Seebeck coefficient, there was no increase in ZT values and the ZT for the nanosized material was below 0.02 in the measured temperature range, while for microsized In-doped sample it reached maximum ZT = 0.7 in (600K).

Key words: thermoelectric materials, nanostructured materials, skutterudite, energy harvesting, spark plasma sintering.

1. Introduction

Optimized thermoelectric (TE) materials can be used for direct energy conversion from heat into electricity in thermoelectric generators (TEG). The generators can be used for clean energy supply and waste heat energy harvesting. High-efficiency TEGs and TEMs (Thermoelectric Module – Peltier Module) may differ, especially in terms of material compositions, depending on the operational temperature. Generally, TEG modules should work with high-temperature gradients [1–3]. The efficiency of the conversion process in such a module depends on the Carnot cycle efficiency and material properties, described by the thermoelectric figure-of-merit (ZT). This ZT parameter merges electrical conductivity, σ, Seebeck coefficient, α, and thermal conductivity, λ. The thermoelectric figure of merit can be written as $ZT = \alpha^2 \cdot \sigma \cdot \lambda^{-1} \cdot T$, and it informs indirectly about module efficiency [4]. To enhance this parameter, it is necessary to increase the Seebeck coefficient and electric conductivity and to reduce the thermal conductivity of the TE material.

Unfortunately, these material properties are interdependent [5]. Thus, a viable strategy for maximizing ZT may consist in first, minimizing lattice thermal conductivity, e.g. by material nano structurization that increases phonon scattering, and then by maximizing the power factor ($P_f = \alpha^2 \cdot \sigma$) through controlling chemical composition and optimum doping. For a wide range of applications, a bulk thermoelectric material with low lattice thermal conductivity and a high power factor is needed [6, 7]. To meet this need, modification of the material in the atomic, nano- and mesoscale [8–10] is necessary. A significant portion of phonons should be scattered on lattice imperfections and grain boundaries to decrease thermal conductivity. In the nanoscale, it is possible to tune thermoelectric properties by creating superlattices, quantum dots, nanowires and nanocomposites [11]. The work performed by Yu-Ming Lin et al. for Bi nanowires indicates that it is possible to obtain a very high ZT with wire dimensions between 10 and 5 nm [12].
The anisotropy of the material can also be used to tune thermoelectric properties along the desired direction [13, 14]. CoSb$_3$ is a TE material from the skutterudite family that is known as a narrow band-gap semiconductor with a parabolic bottom of the conduction band. Optimally doped materials from these groups are state-of-the-art TE materials [15, 16]. For the purpose of this work, indium and tellurium dopants were chosen; these were reported earlier as ingredients that strongly increase the ZT values of CoSb$_3$ [17, 18]. The impact of the pulsed plasma in liquid (PPL) nano structurization process on the thermal properties of pure CoSb$_3$ was analyzed in our preliminary work [19] and shows that it is a possible route to strong reduction in thermal conductivity of the bulk nanomaterial being prepared.

In order to prepare nanosized powders, various methods, including laser ablation [20, 21], flame deposition, radio frequency and microwave plasma synthesis, plasma spray synthesis [22, 23], sol-gel processing and mechanical milling can be used [24, 25]. All of the above-mentioned methods have their weaknesses such as productive efficiency, costs or energy intensiveness. In this paper, we present state-of-the-art CoSb$_3$ [26, 27] thermoelectric material doped by In and Te obtained using PPL [28]. The prepared nanopowders were compacted by means of the solid state rapid consolidation spark plasma sintering (SPS) technique [29–31] to obtain bulk samples. The PPL method of powder preparation followed by rapid SPS densification could be a highly efficient manner to obtain bulk nanosized CoSb$_3$ thermoelectric material.

Electrical discharges observed in liquids are corona or corona-like discharges, pulsed arcs or sparks [32]. PPL with low energy discharge can be used to obtain metastable phases, nanoparticles, etc. because of short duration of the pulse discharge and the surrounding dielectric liquid providing fast cooling. A plasma pulse emerges between electrodes during short electrical breakdowns forced by a high electrical field. The energy generated can evaporate, melt and activate many types of materials of which the electrodes are made, concurrently enabling reaction with a liquid [33, 34], which can also create a protective layer on the particles [35–38]. Various types of nanomaterials can also be obtained by changing the liquid or electrodes [37, 39, 40]. The scheme of the system used in the present study is shown in Fig. 1, and it is similar to the apparatus employed by others [34–36, 41, 42]. In our earlier work [43], we have presented preparation of nanoparticles of the CoSb$_3$ thermoelectric compound by means of the pulsed plasma in liquid (PPL) method. It was found that it is possible to obtain nanoparticles agglomerated in structures that have dimensions of about 1 μm, but from SEM observations it is clear that grains have diameters in the range of 10–30 nm. The XRD diffractograms for thus prepared PPL powders give smaller and more broadened signals, indicating the existence of nanograins or an amorphous phase.

Thermal conductivity was strongly decreased (more than two-fold) but the ZT parameter was very low and equal to about ∼0.1 at the maximum point. The idea of this work was to check the influence on the ZT parameter by both reducing thermal conductivity with the use of nano structurization and by changing electrical properties by doping with tellurium and indium.

2. Materials and methods

2.1. Preparation of materials. For the synthesis, powdered high purity elements (99.99%) were used in amounts corresponding to the stoichiometric composition of the CoSb$_3$ compound. The substrates were mixed in a mechanical mortar grinder. The synthesis was performed in evacuated (P$_{vac}$ ≈ 1 × 10$^{-3}$ mbar) tight quartz ampoules. It took place as a two-step process. First, the reagents were heated to 950°C, annealed for 60 minutes, followed by cooling the sample to ambient temperature. Then, the ingot was ground in an agate mortar and placed in a closed quartz ampoule. During the second stage, the ampoule with the powder was heated to 650°C, annealed for 7 days and cooled slowly [44]. After the synthesis, the material was milled again and the prepared powder was placed in a graphite die for the compaction process in the SPS apparatus under vacuum, at 50 MPa and 650°C to form dense electrodes of polycrystalline CoSb$_3$ [26]. The total time of the sintering process was approximately 30 minutes. Three series of samples were prepared for the experiments. The first one of pure CoSb$_3$, the second of CoSb$_3$ with indium (CoSb$_3$:In0.1), and the last one with tellurium (CoSb$_3$:Te0.1). 3 samples were prepared for each material (CoSb$_3$, CoSb$_3$+In, and CoSb$_3$+Te): 2 samples that were later used for the PPL process and one sample per every composition for measurements. A sample of PPL powders was also prepared for each material. It was later cut and used for electrical measurements ($\phi = 10$ mm, $h = 10$ mm).

2.2. PPL preparation of nanoparticles. In order to produce nanosized powder from the CoSb$_3$ electrodes, the PPL method was used. Two polycrystalline CoSb$_3$ electrodes were placed in an isopropyl alcohol bath at a pre-defined separation distance. Next, 320 V DC was applied to the system. Additionally, an electrode distance regulator was activated to provide vibration and control the distance within the range of 0–0.3 mm. The maximum energy of a single discharge during the process was below 45 mJ. The powder yield was $\sim$ 0.25 g/h. For the electrical and thermal measurements, the nanosized powders after the PPL process were sintered into bulk samples again ($\phi = 10$ mm, $h = 10$ mm). The sintering parameters for the

![Fig. 1. Pulsed plasma in liquid system scheme: 1, 3 – CoSb$_3$ electrodes, 2 – pulsed plasma, 4 – discharge controller, 5 – power supply, 6 – isopropyl alcohol, 7 – vibrator with electrode distance regulator](image-url)
The 2.4. Characterization of materials microstructure. The microstructure of the sintered fine-grained CoSb 3 materials was characterized using an X-ray diffractometer (Bruker D8 Advance) and scanning transmission electron microscopy (STEM) (Hitachi HD 2700, 200 kV, Cs-corrected). The microstructure of the sintered fine-grained CoSb 3 materials was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) (Hitachi SU8000). The microstructure of the sintered fine-grained CoSb 3 materials was characterized using an X-ray diffractometer (Bruker D8 Advance) and scanning electron microscope (Hitachi SU8000).

2.4. Characterization of materials microstructure. The structural and microstructural analyses of the powders and sinters at every step of the experiment were performed using an X-ray diffractometer (Bruker D8 Advance) and scanning electron microscope (Hitachi SU8000). The microstructure of the sintered fine-grained CoSb 3 materials was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) (Hitachi HD 2700, 200 kV, Cs-corrected). The grain size distribution of the powder was measured using an LA-950 HORIBA laser-scattering particle size distribution analyzer.

2.5. Electrical measurements. The electrical conductivity and the Seebeck coefficient of all of the samples were measured using specially design apparatus (SeebTest apparatus from PESS). The idea behind the method is presented in Fig. 2. The Seebeck coefficient was calculated from the Seebeck voltage measurement after temperature stabilization. First without temperature gradient (T1 = T2) and then in the temperature gradient equal to about 5 K. The thermocouple shields (isolated from the thermoelement) act as electrodes. The measurements errors were estimated based on the standard deviation of the measured electrical and temperature data.

![Fig. 2. Scheme of the apparatus for electrical measurements (SeebTest)](image)

Electrical conductivity measurements took place in the same apparatus when T1 = T2 with heater thermocouples acting as electrodes. 2,000 points were collected during a single temperature point measurement, and polarization of the current was changed after every 200 measurements. The electric current was stabilized and equal to about 500 mA. Measurements errors were calculated from the measurements.

All measurements took place under low pressure (10 mBar) with argon as the atmosphere. The apparatus can be used in the range of temperatures, from room temperature to 500°C (if corrosion of the sample does not occur). All parameters are controlled and analyzed by specialized software. Cold ends of thermocouples and additionally Seebeck voltages measured on the reference samples are included in the compensation. Repeatability is very good and it is within the measurement error range. All measurements were made under stationary conditions. One series of measurements took about 2 days for one sample.

The errors of electrical measurement (Seebeck coefficient and electrical conductivity) were very notable and they stood below 10% with repeatability below 3%. The errors for LFA measurements of thermal conductivity were below 5% with repeatability at 1%. ZT errors were calculated from partial derivatives and in our experiments amounted to about 5%. These calculations were based on measurement errors. Although, when we take maximum errors of the methods into account, the errors of the ZT parameter can reach even 30%.

2.6. Thermal conductivity. Thermal conductivity was determined for both the microstructural and nanostructural materials, using the laser flash method (LFA 457-Netzsch) [45]. For the LFA measurements, a sample with the dimensions of \( \phi = 10 \text{ mm and } h = 2 \text{ mm} \) was prepared. The densities for calculations were measured by the Archimedes’ method with water as the liquid. The thermal capacities of the samples were established by the comparative method involving the reference sample.

3. Results

3.1. XRD. The XRD diffraction patterns for the CoSb 3 primary powders and sinters, used later as electrodes (microsized), show visible differences in comparison to the powders prepared by the PPL method (nanosized) and their sinters in Fig. 3.

The microsized powder exhibits strong peaks from the CoSb 3 phase, with a weak signal from pure Sb. Similar diffraction patterns, but without a reflection from Sb, were obtained from the sample after the sintering process. The powder prepared by the PPL method shows a significantly different XRD pattern, with faint reflections from the CoSb 3 phase and strong background indicating a high percentage of nanosized and amorphous material. Additionally, peaks from other phases, such as CoSb 2, CoSb, and Sb, have comparable intensity. The bulk material prepared from the PPL powder is characterized by reappearance of strong reflections from crystallites, which were attributed to grain size growth during the sintering process and reactions occurring between impurities. There is also a small amount of another phase, namely Sb 2O 3, and phases like CoSb 2 and Sb, already identified for the electrode material, are present in lower quantities. Diffraction patterns for CoSb 3 with In or Te exhibit similar tendencies. In the case of In, the starting material has InSb impurities, which later vanish, leaving only a pure CoSb 3 phase with a small amount of Sb 2O 3.
Table 1: Estimated lattice parameters from XRD patterns

<table>
<thead>
<tr>
<th>Material</th>
<th>Lattice parameter [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoSb₃</td>
<td>Synthesized 9.048 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>After PPL 9.050 ± 0.001</td>
</tr>
<tr>
<td>CoSb₃:In0.1</td>
<td>Synthesized 9.060 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>After PPL 9.073 ± 0.001</td>
</tr>
<tr>
<td>CoSb₃:Te0.1</td>
<td>Synthesized 9.054 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>After PPL 9.065 ± 0.001</td>
</tr>
</tbody>
</table>

3.2. SEM/STEM/particle size distribution. The SEM image in Fig. 4a shows the CoSb₃ microsized powder with sharp edges and irregular shapes. Representative STEM (SE – secondary electron) images of the PPL powder show the formation of agglomerates composed of nanosized spheroidal particles (Fig. 4b), creating a spatial structure. The particle size distribution can be seen in Fig. 4c. For the primary CoSb₃ powder, the median size of the particles is 4 µm and the mean size is 5 µm. For the PPL powder, the median size is 0.79 µm and the mean size is 1.0 µm. For the second series of samples, the morphology is similar. The primary CoSb₃:In0.1 powder (Fig. 4d–f) shows the median particles size of 2.6 µm and the mean size is 4 µm. For the PPL powder, the median size is 1.2 µm and the...
mean size is 2 µm. Similar morphology was also observed for the third series of samples. The primary CoSb₃:Te0.1 powder (Fig. 4g–i) has a median particle size of 4.1 µm, and a mean size of 6 µm. For the PPL powder, the median size is 0.56 µm and the mean size is 0.7 µm. The data were collected and presented in Table 2.

**Table 2: Measured parameters for particle size distribution**

<table>
<thead>
<tr>
<th>Material</th>
<th>d_{mean} [µm]</th>
<th>d_{10} [µm]</th>
<th>d_{90} [µm]</th>
<th>d_{med} [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoSb₃</td>
<td>5 ± 3</td>
<td>2.66</td>
<td>8.65</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td>1.0 ± 0.7</td>
<td>0.55</td>
<td>1.57</td>
<td>0.79</td>
</tr>
<tr>
<td>CoSb₃:In0.1</td>
<td>4 ± 3</td>
<td>1.48</td>
<td>7.30</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td>2 ± 1</td>
<td>0.69</td>
<td>2.70</td>
<td>1.18</td>
</tr>
<tr>
<td>CoSb₃:Te0.1</td>
<td>6 ± 3</td>
<td>2.00</td>
<td>10.14</td>
<td>4.07</td>
</tr>
<tr>
<td></td>
<td>0.7 ± 0.3</td>
<td>0.31</td>
<td>1.13</td>
<td>0.56</td>
</tr>
</tbody>
</table>

It should be noted here that, based on the microstructural observation (STEM), the estimated individual grain size of PPL powders is much lower (about 20 nm) and this population dominates in the agglomerates structure. The particle size results and the STEM observation-estimated size discrepancy is due to the conditions of the PPL process because of the process where small crystallites are forming agglomerates during rapid cooling of the evaporated material.

In Fig. 5, we can see the SEM images for the metallographic section of the sinters. For materials prepared from microsized powders, shown in Fig. 5, the diameters of the crystallites are within the range of 10 to 20 µm.

For materials sintered from powders prepared by the PPL technique (Fig. 5d–f), the grain diameter is more than one order of magnitude smaller than in the previous cases and the average crystallite size is in the order of nanometers. The visible porosity may be an effect of mechanical polishing and the chemical treatment but also may be due to the sintering conditions. The densities of all samples measured by the Archimedes’ method in water for microsized and nanosized material and compared with crystallographic value are presented in Table 3.

**Table 3: Samples densities**

<table>
<thead>
<tr>
<th>Material</th>
<th>Measurement, density [g/cm³]</th>
<th>From XRD, density [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoSb₃</td>
<td>Synthesized: 7.66 ± 0.05</td>
<td>7.61 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>After PPL: 6.49 ± 0.01</td>
<td>7.60 ± 0.01</td>
</tr>
<tr>
<td>CoSb₃:In0.1</td>
<td>Synthesized: 7.69 ± 0.04</td>
<td>7.58 ± 0.01 (In in cages)</td>
</tr>
<tr>
<td></td>
<td>After PPL: 6.34 ± 0.05</td>
<td>7.55 ± 0.01 (In in cages)</td>
</tr>
<tr>
<td>CoSb₃:Te0.1</td>
<td>Synthesized: 7.64 ± 0.03</td>
<td>7.38 ± 0.01 (Te in Sb places)</td>
</tr>
<tr>
<td></td>
<td>After PPL: 6.58 ± 0.04</td>
<td>7.35 ± 0.01 (Te in Sb places)</td>
</tr>
</tbody>
</table>

**3.3. Electrical properties.** The Seebeck coefficient and electrical conductivity are presented in Fig. 6a. The Seebeck coefficient is positive and in the range of 120–175 µVK⁻¹ for pure
CoSb₃, which is a value similar to that obtained by other researchers employing a similar preparation method [45].

The Seebeck coefficient for CoSb₃ PPL materials is in the range of ≈75 to 100 μVK⁻¹ and alters its sign with temperature, negative below 550 K and positive for higher temperatures.

A similar tendency in the Seebeck coefficient for pure CoSb₃ was observed by other researchers [26, 46].

For the microsized materials doped with In and Te, the Seebeck coefficient possesses negative values in the range of 225–170 μVK⁻¹. For the PPL-doped materials, the Seebeck coefficient changes from high negative values, i.e. ≈400 μVK⁻¹, going through 0 at 550 K and reaching 80 μVK⁻¹ at higher temperatures. For all of the PPL materials, the Seebeck coefficient has an “S” shaped temperature dependency curve. The measurement errors were negligible and are not presented in the graphs. The error values were in the range of 1–6 µVK⁻¹ for all measured samples.

The electrical conductivity (Fig. 6b) for microsized material decreases with temperature, exhibiting metallic properties. However, the sample sintered from the PPL powders shows a different behavior. Electrical conductivity is lower by two orders of magnitude and increases with temperature, thus indicating semiconducting properties. The estimated activation energy of electrical conductivity, Ea, for PPL In and Te in all temperature ranges is equal to 154 and 160 meV, respectively. The PPL CoSb₃ possesses an activating character of electrical conductivity at higher temperatures.

3.4. Thermal properties. In Fig. 7 values of thermal conductivity and the electronic parts of thermal conductivity calculated from measured values of electrical conductivity are presented. For the LFA method, total thermal conductivity was calculated using the equation \( \kappa_{\text{tot}} = C_p \cdot \rho \cdot \alpha \), where \( C_p \) is specific heat, \( \rho \) is density, and \( \alpha \) is thermal diffusivity [47]. The electronic part of thermal conductivity was calculated from the Wiedemann-Franz law equation, i.e. \( \lambda_{\text{el}} = L \cdot \sigma \cdot T \). The values of electrical conductivity, densities and thermal diffusivity for this were measured by a comparative method using LFA apparatus; for calculations, the \( L \) parameter, 2.44 \times 10⁻⁸ WΩK⁻², was taken from the literature [45].

The data indicate that the fine-grained material prepared from the PPL powder exhibits thermal conductivity almost two-times lower than the coarse grain electrode material in the examined temperature range. At room temperature, thermal conductivity equals 3 Wm⁻¹K⁻¹ for the PPL sinter and almost 10 Wm⁻¹K⁻¹ for the electrode one. In both cases, thermal conductivity decreases with temperature and at 675 K is about 2 Wm⁻¹K⁻¹ for the PPL sinter and 5 Wm⁻¹K⁻¹ for the starting CoSb₃ material. The sharp decrease in thermal conductivity for the PPL sinter was attributed to the microstructure of the sinter with small grain size and increased volume fraction of grain boundaries. Another factor contributing to thermal conductivity is the observed decrease in electrical conductivity. The electronic part of thermal conductivity is much smaller for the PPL material and equals up to 0.15 Wm⁻¹K⁻¹, while the microsized material is up to 1.23 Wm⁻¹K⁻¹.

3.5. ZT parameter. The ZT parameter (Fig. 8) for CoSb₃ and the doped microsize material increases with temperature up to 600 K and then decreases. The highest value of ZT, 0.7, was
reached for the In-doped material at 625 K. Unfortunately, for the nanosized samples, the ZT parameter is much lower than for the microsized material, due to the sign inversion of the Seebeck coefficient at 550 K, and it is below 0.02 for all nanosized material.

4. Discussion

XRD measurements were taken at every step of the preparation. All of the sinters have strong peaks from the CoSb$_3$ phase, although for the powders after the PPL, due to the small grain size, the peaks are smaller and more broadened. Also, other phase signals, like CoSb$_2$ and CoSb, vanished after sintering. Some impurities in the last step could be eliminated by adjusting conditions and using better process control with the appropriate liquid which should be selected in future work. It is noteworthy that in all samples oxidation was negligible except for a small amount of Sb$_2$O$_3$ in the samples after sintering the nanopowders. The cell parameter increases after the PPL process and after addition of the dopant. The cell parameters of PPL powders are higher than in the In-doped CoSb$_3$ [49] or in the Te-doped material [18].

The SEM observations indicate that in all cases of PPL treatment a nanomaterial was obtained. The nanoparticles, after the PPL process, form larger agglomerates. The agglomerate diameters are presented in particle size distribution, and they are distinctly larger than the single PPL crystallite; however, they are still smaller than the crystallites in the starting powder. After the sintering process, there is visible growth of crystallites and for the microsized material used as electrode materials, the average diameter is 10 to 20 µm. For the sinters from the nano PPL powders, the average diameters for all the samples are comparable and about one order of magnitude smaller than the crystallites in the reference material. The densities of all the sinters from the microsized powders reach 100% of theoretical value. Unfortunately, the sinters from the nanosized powders prepared by the PPL method reach, in all cases, about 85% of theoretical value. This may be related to the sintering process because to avoid grain size growth, the sintering time was intentionally decreased from 15 to 5 min. Based on this experiment, the sintering condition should be adjusted to ensure higher PPL sample densification.

The Seebeck coefficient is positive and in the range of 120–175 µVK$^{-1}$ for pure CoSb$_3$, which is a value similar to that obtained by other researchers employing a similar preparation process [45]. The positive sign of the Seebeck coefficient is also connected with the use of high purity elements for the synthesis. The Seebeck coefficient for the CoSb$_3$ PPL materials is in the range of −75 to 100 µVK$^{-1}$ and alters its sign with temperature, negative below 550 K and positive for higher temperatures. Some researchers have noticed a similar tendency in the Seebeck coefficient for pure CoSb$_3$ [26, 46]. At low temperatures, Seebeck coefficients have high n-type absolute values, corresponding to the extrinsic region. When the conduction by minority carriers increases, the Seebeck coefficient decreases and becomes p-type for the lightly doped samples [26]. Also, it is known that the Co-rich CoSb$_3$ phase acts as an n-type material while Sb acts as p-type [10], and the changes in concentration and mobility of the majority of carriers can lead to a change in the Seebeck coefficient sign from n-type to p-type. For all of the PPL materials, the Seebeck coefficient has an “S” shape for the temperature dependency curve. This may be explained, as in the case of CoSb$_3$, by the increase of the role of the intrinsic region. The phenomenon may also be related to changes in compositions and the Sb losses during the PPL process.

Electrical conductivity of all microsized materials exhibits metallic properties and decreases with temperature; whereas for the nanosized material, electrical conductivity increases with temperature and is almost one or two orders of magnitude lower than for the starting material. The electrical conductivity of the microsized In and Te-doped material is comparable with literature values [50, 51]. The nanosized PPL material has an activation character of electrical conductivity. It may be related to changes of the stoichiometry of the compound during the PPL process and dopant or Sb losses. Additionally, the lower density of the PPL sinters may be responsible for decreasing electrical conductivity.

At room temperature, thermal conductivity reaches 3 Wm$^{-1}$K$^{-1}$ for the PPL CoSb$_3$ sinters and almost 10 Wm$^{-1}$K$^{-1}$ for the microsized bulk material. In both cases, thermal conductivity decreases with temperature. The highest improvement was achieved for pure CoSb$_3$. Improvement of materials doped with In and Te was smaller because the starting material is characterized by conductivity lower than pure CoSb$_3$ and, at room temperature, it was equal to about 4 and 5 Wm$^{-1}$K$^{-1}$, respectively. All of the nanosized material has thermal conductivity of about 3–3.5 Wm$^{-1}$K$^{-1}$ at room temperature and its value is about 3 times lower than for pure CoSb$_3$. The data from the particle size distributions are correlated with thermal conductivity. For the material with Te, there is higher improvement in thermal conductivity than for the material with In. This improvement may be attributed to the nanostructure of the sinter with small grain size and increased volume fraction of the grain boundaries. Another factor contributing to thermal conductivity is the observed decrease in electrical conductivity. The electronic part of thermal conductivity is much smaller for the PPL material and equals up to 0.15 Wm$^{-1}$K$^{-1}$ while for the microsized material this value reaches up to 1.23 Wm$^{-1}$K$^{-1}$ and it is related to changes from metallic to semiconducting properties of the samples after the PPL process. Because of the nanostructurization process, presented in our work, significant improvement in decreasing thermal conductivity was achieved. This improvement is in agreement with Xie et al.’s work [52] that claims that nano structurization can improve the thermal properties of TE materials. Another factor responsible for lower thermal conductivity relates to the lower density of the PPL sinters, which reach about 85% of theoretical value, whereas for the microsize material densities they reach 100%.

For the material doped with In, the maximum ZT of 0.7 at 600 K is comparable with the ZT of 0.67 reported for In$_{0.35}$Co$_4$Sb$_{12}$ at 600 K [53]. The highest value of ZT, 0.7, was achieved for the microsized Te-doped material at 725 K, which
is comparable with Deng et al.’s work: ZT = 0.69 at 710 K [18]. Unfortunately, for the nanomaterials there was no improvement in the ZT parameter because the PPL bulk material has significantly lower electrical conductivity and the Seebeck coefficient changed its sign in the middle of the temperature range, thus resulting in a low ZT value.

It is possible that the introduction of defects like grain boundaries may influence dopant segregation, so the amount of dopant must be considered to improve thermoelectric properties. In this study, the Seebeck coefficient has the most negative impact on the ZT value. Some additional information from Hall measurements could prove helpful for understanding the changes in electrical properties after the preparation of the material by the PPL method.

5. Conclusions

A new approach to fabricating nanosized CoSb$_3$ TE material was used. The preparation of this state-of-the-art TE material from the skutterudite family, with the use of PPL with low-energy spark discharge, was presented. The PPL technique required the presence of dense electrodes made of single phase CoSb$_3$ material synthesized by a traditional synthesis method. The PPL preparation method enabled the obtaining of nanocrystalline CoSb$_3$ powders with grain size of 10–30 nm. After SPS, these powders were processed into bulk thermoelectric materials. Their thermal conductivity is over two times lower than for the microcrystalline materials. Reducing thermal conductivity in pure CoSb$_3$ and in the material doped with In and Te is very promising. Unfortunately, there was no improvement in the ZT parameter, because the PPL bulk material had significantly lower electrical conductivity and the Seebeck coefficient changed its sign in the middle of the temperature range, thus resulting in a low ZT value. For improvement of these nanomaterials in the future, optimization of the sintering process to increase density is needed along with adjustment of dopant concentration to increase the Seebeck coefficient and electrical conductivity, and thereby the ZT parameter.

Acknowledgements. The research presented in this paper was supported by the postdoctoral project No. DEC-2014/12/S/ST8/00582 (the years 2014–2017) and scientific project UMO-2016/23/D/ST8/02686 (the years 2017–2020) financed from the resources assigned for science by the National Science Centre (NCN, Poland). This scientific work was partially financed by the National Centre for Research and Development (NCBR, Poland) within the framework of the project No. PBS3/A5/49/2015.

REFERENCES


Characterization of nanostructured bulk cobalt triantimonide doped with tellurium and indium prepared by pulsed plasma in liquid method


