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Abstract
The non-contact current measurement method with magnetic sensors has become a subject of research.
Unfortunately, magnetic sensors fail to distinguish the interested magnetic field from nearby interference
and suffer from gauss white noise due to the intrinsic noise of the sensor and external disturbance. In
this paper, a novel adaptive filtering-based current reconstruction method with a magnetic sensor array is
proposed. Interference-rejection methods based on two classic algorithms, the least-mean-square (LMS)
and recursive-least-square (RLS) algorithms, are compared when used in the parallel structure and regular
triangle structure of three-phase system. Consequently, the measurement range of RLS-based algorithm
is wider than that of LMS-based algorithm. The results of carried out simulations and experiments show
that RLS-based algorithms can measure currents with an error of around 1%. Additionally, the RLS-based
algorithm can filter the gauss white noise whose magnitude is within 10% of the linear magnetic field range
of the sensor.
Keywords: current measurement, adaptive filtering, sensor array, gauss white noise.
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1. Introduction

Advanced technologies to provide accurate parameter information such as active power,
reactive power and measured current are of great significance for the development of a smart grid
[1–3]. Especially, a high-accuracy current information is the key to the safety and reliability of a
modern power system. Conventional current transformers use a closed magnetic core to transform
the magnetic field signal into the electric current signal. However, due to the magnetic core, the
transformer encounters the problem of saturation, which can cause false current waveforms with
distortion [4]. Besides, the closed structure of the transformer is inconvenient for installation and
disassembly [5]. Due to the shortcomings of the traditional current transformers, novel current
measurement devices have attracted more and more attention of researchers [6]. A non-contact
current measurement method with magnetic sensors proves to be an effective approach that can
overcome the two aforementioned disadvantages. These devices are free from the saturation
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problem of the magnetic core and are physically flexible. Nevertheless, using a magnetic sensor
to measure current needs to deal with one problem: the superposition of the magnetic field and
magnetic interference from external current sources. Conventional current transformers block
the nearby magnetic interference with the magnetic core. However, the magnetic sensors, due
to their high sensitivity, fail to distinguish the interfering magnetic field from the magnetic
field generated by the current under measurement [7, 8]. Therefore, some approaches have been
proposed to alleviate the effect caused by the magnetic interference.

One of the approaches is the sum-average algorithm [9–12], which utilizes the averaging of the
magnetic field detected by the sensors to estimate the current under measurement. However, when
the nearby magnetic field is much stronger than the magnetic field generated by the current under
measurement, the estimated error is large [13, 14]. Additionally, the interference is regarded as a
virtual current generated by one nearby conductor [15, 16]. For the three-phase current system,
when measuring a one-phase current, the other two one-phase currents function as interfering
sources. Another problem for a magnetic sensor is the noise from the intrinsic and background
interference. This kind of noise is random and is regarded as gauss white noise [17], which
can have an influence on the accuracy of the magnetic field measurement. Nevertheless, the
sum-average algorithm cannot remove the gauss white noise. Therefore, there is an urgent need to
develop novel methods of reducing the influence of magnetic interference in current measurement
in the three-phase current system.

Adaptive filtering algorithms have been widely used for eliminating gauss white noise in
processing communication signals [18]. In recent years, some works have dealt with applying the
adaptive filtering algorithms to power systems [19–23]. In [19], the authors proposed a Lorentzian
norm-based adaptive filter to control Voltage Source Converter in a wind-driven distributed gen-
eration system. In [20], a prediction-error covariance estimator for adaptive Kalman Filtering
was proposed and validated in the case of power system state estimation. In [21], an algorithm
based on recursive-least-squares (RLS) and iterated extended Kalman filter (IEKF) techniques
was designed to estimate the real-time harmonics in a power system. In [22], the authors used a
robust RLS approach to assess conservation voltage reduction in a power distribution system. In
[23], a robust RLS algorithm was demonstrated for online identification of power system modes.
In particular, the authors in [24] designed an optimal steady-state filtering and a sub-optimal
steady-state filtering based on Kalman Filtering for non-contact current measurement. The appli-
cation of optimal filtering was limited because it relied on the information of characteristics of
the system status, which was unknown in a real scenario. Sub-optimal filtering was proposed to
compensate this shortcoming. However, only currents up to a few amperes were tested and the
error reached up to 5%.

Inspired by these works, in this paper, an adaptive filtering algorithm is applied to mea-
sure one-phase current in the three-phase current system. Since the least-mean-square (LMS)
[25, 26] and RLS [27–29] algorithms are two classical adaptive filtering algorithms with the
advantages of computational efficiency, simple code and robustness in relation to disturbances
[18, 30], interference-rejection algorithms based on the LMS and RLS algorithms are proposed
and compared to be used for non-contact current measurement with a magnetic sensor array.

The goals of this paper include:
– to reduce the influence of other two one-phase currents when one one-phase current is

under measurement;
– to demonstrate the effectiveness of the adaptive filtering-based algorithms when applied to

two structures of the three-phase current system in medium-voltage and low-voltage power
networks;

698



Metrol. Meas. Syst.,Vol. 26 (2019), No. 4, pp. 697–711
DOI: 10.24425/mms.2019.130567

– to examine how the algorithms are affected by such factors as the parameters in adaptive
filtering, number of sensors, sensor position and conductor displacement;

– to prove the capability of the algorithms to filter out the gauss white noise caused by the
intrinsic noise of sensors and external disturbances.

The rest of the paper is organized as follows. In Section 2, the mathematic principles of LMS-
based and RLS-based algorithms are analysed. In Section 3, there are described simulations
examining the influence of the number of sensors, learning rate and forgetting factor, sensor
position, conductor displacement and current magnitude. In Section 4, there are presented FEA
simulations and laboratory experiments analysing the RLS-based algorithm applied to current
measurement. Conclusions are presented in Section 5.

2. Mathematical background

The three-phase alternating current system usually has two types of structure, as shown in
Fig. 1. In this paper, a sensor array consisting of four uniformly placed magnetic sensors (S1, S2,
S3 and S4) is proposed to measure one-phase current. The case when I1 is the target current is
used as an instance to illustrate the mathematical principle of the algorithms. As shown in Fig. 1,
the distance between two conductors is d, which is within a range of 0.5 m. The distance between
the target conductor and sensor is r . B11, B12, and B13 are magnetic fields generated by I1, I2 and
I3, respectively. Magnetic sensors can detect the magnetic field along the sensitive direction of
sensors. For example, for S1, the direction is along the direction of B11. Due to the superposition
of the magnetic fields, the detected magnetic field (B1 to B4) by S1 to S4 can be determined
theoretically based on Biot-Savart Law as:



B1 =
µI1

2πr
+

µI2r
2π(d2 + r2)

+
µI3r

2π(d2 + r2)

B2 =
µI1

2πr
− µI2

2π(d − r)
+

µI3

2π(d + r)

B3 =
µI1

2πr
+

µI2r
2π(d2 + r2)

+
µI3r

2π(d2 + r2)

B4 =
µI1

2πr
+

µI2

2π(d + r)
− µI3

2π(d − r)

, (1)

a) b)

Fig. 1. Structures of the three-phase alternating current system: a) parallel; b) regular triangle.
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where µ is the permeability of free space. In this case, I2 and I3 serve as the interfering currents.
When measuring the other two one-phase currents, the placements of the sensors are respectively
depicted by dotted lines in Fig. 1.

In this paper, interference-rejection algorithms based on the LMS and RLS are proposed and
examined.

2.1. LMS-based algorithm

The main idea of LMS-based adaptive filtering algorithm is to minimize the squared error
between the filtered output signal and the reference signal (also called the desired signal), which
is obtained by updating the filtered weights of w, the initial value of which can be set to 0. That
is, w = [0, 0, . . . , 0]1×M , where M is the input dimensionality. In this paper, the input signals
are the magnetic fields detected by the sensors. The final filtered output signal is the current
magnitude. With the interference from other two one-phase currents, information on the target
current is unknown. Some works [9–12]have demonstrated that the sum-averaging algorithm
is an acceptable method to eliminate the interfering magnetic field from other current sources.
Therefore, the desired signal is the current of Iave determined by the average of the detected
magnetic fields according to Biot-Savart Law. Assuming the number of sensors is P, there are P
filtered output signals, among which the filtered signal with the smallest error between the filtered
signal and the desired signal is taken as the final output. In this paper, P is equal to 4. After the
filtering, there will be P current signals. The final current I f inal is determined by choosing a
signal Iq (q ∈ {1, 2, . . . , P}) whose magnitude at the peak value is closest to the desired signal.
Therefore, the whole process can be expressed as shown in Table 1, where Bi is the magnetic
field detected by sensor Si , Ĩi is the processed output of magnetic field with filtered weights, u
is a parameter called learning rate in LMS algorithm. The magnetic field detected in a period
of time is selected as the input of LMS-based algorithm. This period of time is divided into N
sampling points and n can be any one of the sampling points, which should be less than or equal
to N . Then, the error between the filtered current signal at the peak value and the real current at
the peak value can be determined.

Table 1. The LMS filtering algorithm-based current reconstruction.

Training Sample:
Input: Bi , i = 1, 2, . . . , P

Desired Signal: Iave =
1
P

(
2πrB1
µ0

+ · · · + 2πrBP

µ0

)
User-selected Parameter: u

Initialization: w(n) = [w1 (n), w2 (n), . . . , wM (n)] = [0, 0, . . . , 0]1×M , 0 ≤ n ≤ N

Ĩi (n) =
M∑
k=1

wk (n)Bi (n −M + k − 1)

Computation: w(n + 1) = w(n) + 2ueBi (n)

e(n) = Iave (n) − Ĩi (n)

Finalization:
if Max[Iq ] −Max[Iave] ≤ Max[Ii ] −Max[Iave]

then Ifinal = Iq
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2.2. RLS-based algorithm

The main idea of RLS algorithm is similar to that of LMS algorithm. Nevertheless, differently
from LMS algorithm which updates the filtered weights after the filtered output, the error signal
in RLS algorithm is obtained with the difference between the desired signal and the newest
updated filtered weights. In the RLS-based algorithm, the average of the magnetic fields detected
according to Biot-Savart Law is taken as the desired signal. Similarly to the LMS-based algorithm,
the final current Ifinal is determined by choosing a signal Iq (q ∈ {1, 2, . . . , P}), the error between
which and the desired signal is the smallest. The whole process is presented in Table 2, where λ
(0 ≪ λ ≤ 1) is called a forgetting factor, E is a unit matrix of M-order, K is a gain vector.

Table 2. The RLS filtering algorithm-based current reconstruction.

Training Sample:
Input: Bi , i = 1, 2, . . . , P

Desired Signal: Iave =
1
P

(
2πrB1
µ0

+ · · · + 2πrBP

µ0

)
User-selected Parameter: λ

Initialization: w(n) = [w1 (n), w2 (n), . . . , wM (n)] = [0, 0, . . . , 0]1×M , SD = E, 0 ≤ n ≤ N

Computation:

Ĩi =

M∑
k=1

wk (n)Bi (n + k − 1)

K =
SDBT

i

λ + BiSDBT
i

SD =
1
λ

(SD − KBiSD )

w(n + 1) = w(n) + +K (Iave − Ĩi )

Finalization:
if Max[Iq ] −Max[Iave] ≤ Max[Ii ] −Max[Iave]

then Ifinal = Iq

3. Assessment of algorithm parameters

Numerical simulations were carried out to analyse the effects caused by the number of sensors,
the position of the sensor, the learning rate of LMS-based algorithm and the forgetting factor
of RLS-based algorithm. The amplitude relative error (RE) between the filtered result at the
peak value and the real current signal at the peak value was used to examine these effects. For
the parameters of the numerical model, the distance d between two conductors was 0.3 m. The
distance between the sensor and conductor was 0.015 m. The two algorithms were finally tested in
the three-phase current measurement in two different structures. i1(t) was the target current. i1(t)
was Im sin(100πt), i2(t) was Im sin (100πt − 2π/3) and i3(t) was Im sin (100πt + 2π/3) while
Im changed from 50 A to 600 A. So, the amplitude relative error can be determined by

RE =
����� Imf − Im

Im

����� × 100% , (2)

where Imf is the peak value of the filtered current signal.
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3.1. Learning rate and forgetting factor

The impact of the learning rate and the forgetting factor on the filtered output signal is first
analysed for the parallel structure. Im is set to 600 A. For the LMS-based algorithm, the learning
rate u controls the convergence rate of the Mean Squared Error. Therefore, the value of learning
rate has an effect on the convergence performance of the LMS algorithm and the filtering results.
At the beginning period of 4 ms, the filtered output signal is zero for the initial filtered weights
are zero. As shown in Fig. 2a, the estimated results of the current vary in relation to the change of
the learning rate. When the learning rate increases, the amplitude relative error becomes smaller.
When the learning rate is 1000, the error is 7%. However, there is a time delay between the
reference value of the target current and the estimated result, about 1.5 ms. Nevertheless, when
the learning rate is 5000, the error is 2%. However, the error is not always negatively correlated
with the learning rate. For example, when the learning rate is 8000, the error becomes as large
as 26%. Further performance of the algorithm is assessed with the changing frequency of the
current. The results are presented in Table 3. For the LMS-based algorithm, it can be noted that
the amplitude relative error is negatively correlated with frequency.
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Fig. 2. Filtered current vs. time a) with different learning rate values; b) with different forgetting factor values.

Table 3. Current amplitude relative error (%) vs. frequency.

Frequency (Hz) 50 60 70 80 90

u = 1000 7 7 5 4 2

u = 5000 1 0.4 5 × 10−2 2 × 10−3 6 × 10−4

λ = 0.1 9 × 10−3 0.7 3.00 7 14

λ = 0.01 6 × 10−4 6 × 10−4 6 × 10−4 6 × 10−4 6 × 10−4

In the RLS algorithm, the forgetting factor λ suggests the increasingly negligible effect of
the distance information on the coefficient updating. It can be seen in Fig. 2b that the filtered
output signal takes less time to be close to the reference of I1 when the forgetting factor is smaller.
Additionally, when the forgetting factor is 0.1, the error is 9 × 10−3% at the first peak value of
the current. When the forgetting factor is 0.01, the error is 6× 10−4%. Besides, the error becomes
smaller as the sampling time becomes longer. For instance, for the forgetting factor of 0.1, the
error is 9 × 10−3% at the time of 5 ms. Nevertheless, the error becomes 6 × 10−4% at the time of
15ms. This phenomenon does not exist in the LMS-based algorithm. However, when the factor
is too small, such as 0.0001, or when the factor is large, such as 1, the algorithm fails to filter the
signal.
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For the following parts, the error discussed is at the first peak value of the current.
Then, the relationship between the error and the frequency of the current is examined. The

results are shown in Table 3. It can be seen that when λ is 0.1, in contrast to the consequence
of LMS-based algorithm, the error is positively correlated with the frequency of the current.
Nevertheless, when λ is 0.01, the error remains at 6 × 10−4%, which suggests that the filtered
result is much closer to the desired signal.

Since the current signal in a power system contains higher harmonics, the effects caused
by the poly-harmonics are analysed. Assuming the target current I1(t) is 600 sin(100πt) +
Nm sin(1000πt), when Nm is 10, 20 and 30, respectively, the results obtained with the LMS-
based and RLS-based algorithms are depicted in Fig. 3. It can be seen that the LMS-based
algorithm gives better results when Nm is 10. Nevertheless, when the amplitude of harmonics
becomes larger, the algorithms fail to remove the harmonics.
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Fig. 3. Filtered current vs. different amplitude of harmonics. a) Nm = 10 by LMS-based algorithm;
b) Nm = 20 by LMS-based algorithm; c) Nm = 30 by LMS-based algorithm; d) Nm = 10 by
RLS-based algorithm; e) Nm = 20 by RLS-based algorithm; f) Nm = 30 by RLS-based algorithm.

3.2. Numbers of sensors

In numerical simulations, effects caused by the number of sensors are examined. Im changes
from 50 A to 600 A. For the LMS-based algorithm, the learning rate is set to 5000. For the
RLS-based algorithm, the forgetting factor is set to 0.1. The cases of two, three and four sensors
have been tested. The error between the reference current and the estimated magnitude at peak
is calculated. Arrangements of sensors are shown in Fig. 4. The results are shown in Fig. 5. For
the LMS-based algorithm, the error decreases with more sensors. However, for the current less
than 100 A, the error is larger than 6%. For the current up to 600 A, the error can reach up to 9%.
Since the updated weight is influenced by the fixed learning rate, the LMS-based algorithm has
an effective filtering range. For the RLS-based algorithm, it can be noted that there is a negative
correlation between the error and the number of sensors and that the error is negatively correlated
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with the current amplitude. Nevertheless, the error becomes larger with an increase of current
amplitude when only three sensors are employed in the regular triangle structure, which is not
suitable for measurement of large currents. Compared with the results obtained for the parallel
structure, this is caused by the structure difference. For instance, when Im is 600 A, at 5.5 ms,
for sensor S2, the combined magnetic flux density coming from I2 and I3 is 0.1682 Tesla. In
the parallel structure, the combined magnetic flux density is 0.01 Tesla, much smaller than that
in the triangular structure. So, as the magnitude increases, the filtered signal has a larger error
when the forgetting factor is fixed. When the RLS-based algorithm is used with four sensors,
the maximum error is 1% for the current ranging from 50 A to 600 A. The effective range of
RLS-based algorithm is larger than that of LMS-based algorithm. Therefore, compared with the
LMS-based algorithm, the RLS-based algorithm with a four-sensor structure is more stable and
can achieve a higher accuracy. Additionally, even though more sensors will cause more power
consumption, four sensors are employed in the proposed method.

a) b) c)

Fig. 4. Arrangements of sensor array a) 2 sensors; b) 3 sensors; c) 4 sensors.
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Fig. 5. Error vs. current amplitude with different numbers of sensor a) for the LMS-based algorithm;
b) for the RLS-based algorithm.

3.3. Sensor position

Numerical simulations are then performed to analyse the influence of the sensor position
in the parallel structure and regular triangle structure, respectively. Four sensors are used and
the distances between each sensor and the target conductor are the same. Im is set to 600 A.
For the LMS-based algorithm, the learning rate is set to 5000. For the RLS-based algorithm, the
forgetting factor is set to 0.1. The distance between sensor and the conductor changes from 0.015m
to 0.025m. The results in Fig. 6 show that the RLS-based algorithm displays a higher accuracy
than the LMS-based algorithm. For both algorithms in the triangle structure, the error between
the reference magnitude and the estimated current at the peak value of the current increases as the
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distance between sensor and the conductor increases. However, for both algorithms in the triangle
structure, the error is not strictly positively correlated with the distance between sensor and the
conductor. In addition, the error variance (error divided by minimum error) for the LMS-based
algorithm is 160% in the parallel structure and 263% in the regular triangle structure, while
the error variance for the RLS-based algorithm is 130% in the parallel and 250% in regular
triangle structure, respectively. The RLS-based algorithm shows better stability compared with
the LMS-based algorithm.
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Fig. 6. Error vs. sensor position a) LMS-based algorithm; b) RLS-based algorithm.

3.4. Conductor displacement

Above discussions assume that the conductor is at the sensor array centre. However, a con-
ductor displacement may occur when installing the sensor array. This part examines the influence
contributed by the conductor displacement. In this part, a conductor displacement is defined
as a single conductor moved relative to other conductors. In the parallel structure, the target
conductor moves along the line connecting the centres of the three conductors. In the triangular
structure, it moves along the line connecting the centres of the target conductor, S2 and S4 (see
Fig. 1). Due to the symmetry of the two structures, the situation that the conductor moves to
the right side is discussed. For the LMS-based algorithm, the learning rate is set to 5000. For
the RLS-based algorithm, the forgetting factor is set to 0.1. Im is set to 600 A. I1 is the target
current, which moves to the position represented by the dotted line in Fig. 1, with a translation
distance of ∆r . The estimated errors at the peak value of the current obtained with the LMS-based
and RLS-based algorithms are depicted in Fig. 7. It can be seen that the error obtained with
the RLS-based algorithm is larger when the conductor displacement exceeds 6 mm. When the
conductor displacement is 10 mm, the error reaches up to 25% while it is 14% for the LMS-based
algorithm. In the regular triangle structure, the maximum error obtained with the RLS-based
algorithm is 25% while for the LMS-based algorithm it is 13%. Nevertheless, the LMS-based
algorithm yields a larger error than the RLS-based algorithm when the displacement is within
6 mm. In addition, the error obtained with the LMS algorithm is not strictly correlated with the
displacement. When the displacement is 6 mm in the parallel structure, the error obtained with
the LMS-based algorithm is minimum, which is 0.4%. For the displacement of 7 mm in the
triangular structure, the error of 0.5% is the minimum one. Therefore, considering a small size of
the measurement structure, compared with the LMS-based algorithm, the RLS-based algorithm
still shows better performance.
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Fig. 7. Error vs. conductor displacement.

4. Validation of RLS-based algorithm

4.1. Normal signal

4.1.1. Laboratory experiments

From the above results, the RLS-based algorithm shows better performance with a smaller
error. Laboratory experiments were then carried out to examine the effectiveness of RLS-based
algorithm in measurement of three-phase alternating current. The arrangement of experimental
equipment is shown in Fig. 8. A 220 V commercial power of 50 Hz supplies three resistive
loads. The peak-to-peak value of each phase is presented in Table 4. A current probe, A621 from
Tektronix, is employed to measure current as the reference value. Four Tunnel Magnetoresistance
(TMR) sensors are uniformly placed in a panel, constituting an array. The type of sensor is
TMR2104, from dowaytech [31]. The current-carrying conductor with a radius of 5 mm is placed
at the centre of the sensor array. The displacement error of sensors is within ±0.01 mm. The
displacement of conductor is within 1 mm. At a laboratory temperature of 25◦, the used TMR
has a linear output when the range of the applied magnetic field is within ±80 Gauss. Therefore,
the maximum magnitude of current should be smaller than 600 A. A stable DC power source,
LM337t of 3 V, supplies the sensor array circuit. The distance between the conductor and sensor
is set to 1.5 cm. All the data are recorded in an oscilloscope, MDO3012 from Tektronix. The
resolution bandwidth is 10 kHz. The sample rate is 100 kS/s.

Fig. 8. The arrangement of laboratory experiment a) experiment for the parallel structure;
b) experiment for the regular triangle structure; c) arrangement of the sensor array.
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Since the temperature and the supply voltage influence the sensitivity of the TMR sensor,
calibration experiments were first performed to determine the relationship between the current
under measurement and the magnetic field generated by it. With data fitting, the sensitivity
was determined as 3.085 mV/V/Gauss. Based on the definition of sensor sensitivity from the
datasheet, the relationship between the magnetic field and the output voltage of the sensor can be
expressed as:

Output Voltage = 3.085Vsp FgB, (3)

where: Vsp is the supply voltage; Fg is the gain factor and B is the detected magnetic flux density.
In the experiments, the supply voltage is 3 V and the gain factor of the amplifier INA333 is 2. The
laboratory experiments were then performed for each phase current in the parallel and regular
triangle structures. The distance between two adjacent conductors in two structures was 0.3 m.
The results are presented in Table 4. It can be seen that for the RLS-based interference-rejection
algorithm, the error at the peak value of the current is less than 2%. The minimum error is 1 %.
Compared with the results of numerical simulations, the error is larger. Due to the complexity of
the laboratory experiments, the error is mainly contributed by the displacement of the conductors,
sensors, and the magnetic interference from nearby electrical equipment. In addition, errors also
come from the current probe and digital oscilloscope.

Table 4. Amplitude relative error values (%) between the filtered and reference currents of each phase.

Phase Reference Value (A)
Error (%)

In parallel In Triangle

I1 42.4 1 2

I2 42.8 2 2

I3 41.6 2 2

4.1.2. FEA simulations

Due to the limited scope of the experiments, larger currents were tested by the finite element
analysis (FEA) method in ANSYS Maxwell 16.0 to examine the cases where the RLS-based
algorithms were applied to direct current measurement. In accordance with the above discussion,
the simulation model was constructed as shown in Fig. 9. The currents flow along the positive z
axis in the copper conductor. The simulations were performed when the magnitude of the direct
current changed from 50 A to 600 A. The conductors were placed in a vacuum box region, which

a) b)

Fig. 9. The simulation model a) in the parallel structure; b) in the regular triangle structure.
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was four times larger than the current system. The element length-based refinement was chosen
for the mesh operations. The maximum length of elements was set to 100 mm. For the conductors,
the maximum length of elements was set to 10 mm. Due to the symmetry of the structure, only I1
and I2 are discussed as the target currents in the parallel structure while only I1 is discussed as the
current under measurement in the regular triangle structure. When the current-to-be-measured
is 600 A, the algorithm becomes non-convergent. For the RLS-based algorithm, the results are
depicted in Fig. 10a. It can be seen that the error is less than 0.8 % in two structures. The error in
direct current measurement does not change in relation to the varying of the current magnitude
because the magnitude of direct current keeps the same, as a result of which, the error is insensitive
to the direct current magnitude.
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Fig. 10. Error vs. magnitude of current a) direct current; b) alternating current.

The tests were carried out to examine the effectiveness of the two algorithms for alternating
currents in a wider range. The model settings were the same as those for direct current simulation.
The simulation time was 50 ms with a time step of 0.05 ms. i1(t) was Im sin(100πt), i2(t) was

Im sin
(
100πt − 2π

3

)
and i3(t) was Im sin

(
100πt +

2π
3

)
while Im changed from 50 A to 600 A.

Since the first peak of i2(t) occurred when t was 6.7 ms while the initial filtered weights were
zero at the beginning period of 4 ms, the error at the second peak value of the i2(t) is discussed.
For i2(t), the estimated error obtained with the RLS-based algorithm remains 6 × 10−4% in the
parallel and regular triangle structures. For i3(t), the error remains 3 × 10−4% in both parallel
and triangle structures. Other estimated results are shown in Fig. 10b. When Im is set to 600A,
the specific errors between the reference magnitude of each phase current and the filtered result
at the peak value of the current are presented in Table 5. Still, it can be seen that the RLS-based
algorithm exhibits high accuracy. It should be noticed that the magnetic field generated in the
FEA simulations is not exactly the same as the theoretical value obtained by Biot–Savart Law.
Due to the symmetry of parallel structure, the errors for both I2 and I3 currents should be the

Table 5. Error (%) obtained with the adaptive filtering algorithm in different structures.

Structure In parallel In Triangle

I1 0.01 0.01

I2 6 × 10−4 6 × 10−4

I3 3 × 10−4 3 × 10−4
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same. Similarly, in the triangle structure, the errors for all currents I1, I2 and I3 should be the
same. However, the results are not the same due to the difference between the simulated magnetic
field and the theoretical one.

4.2. Noisy signal

In real scenarios, the magnetic field signal under measurement will be contaminated by
factors like the intrinsic noise of magnetic sensors, noise from the geomagnetic field and noise
from nearby electrical equipment. Sum-average algorithms cannot remove the disturbance of the
white gauss noise. Due to the filtering function of adaptive filtering algorithms, one advantage of
the RLS-based interference-rejection algorithm is the ability to remove these noises. Since these
noises are uncorrelated, the random white gauss noise of a standard normal distribution is added
to the signal detected by the sensors [17]. When the peak current value is 600 A, the magnetic
field is 80 Gauss. So, gauss white noises with amplitudes of 5%, 10% and 15% of 80 Gauss were
tested. The results estimated by the RLS-based algorithm in two structures are shown in Fig. 11.
It can be seen that after the second period, the current signal becomes much smoother with the
RLS-based filtering algorithm when the gauss white noise is within 10% of the strength of the
detected magnetic field. The standard deviation of the difference between the filtered signal and
the real current signal is calculated based on the data from the period between 20 ms and 50 ms.
In the parallel structure, the standard deviation is 11 A. In the triangular structure, the standard
deviation is 24 A. This is larger than the standard deviation in the parallel structure due to the
stronger effect caused by the noise in the triangular structure.
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Fig. 11. The current filtered by the RLS-based interference-rejection algorithm with gauss white
noise of different strength a) 5% in parallel; b) 10% in parallel; c) 15% in parallel; d) 5% in triangle;

e) 10% in triangle; f) 15% in triangle.

5. Conclusions

In this paper, an adaptive filtering-based current reconstruction method with a magnetic sensor
array is proposed to measure current in the three-phase current system. First, factors including the
learning rate, forgetting factor, number of sensors, sensor position and conductor displacement
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were analysed by numerical simulations. For 600 A current at 50 Hz, when the forgetting factor
is 0.01, the amplitude relative error obtained with the RLS-based algorithm is 6 × 10−4%.
Compared with the array containing two or three sensors, the four-sensor structure has better
performance. From the simulations of sensor positions results that the RLS-based interference-
rejection algorithm is more stable. The error variance in relation to the sensor position which
changes from 15 mm to 25 mm is 130% in the parallel and 250% in the regular triangle structure.
When a conductor displacement is within 6 mm, the error of the RLS-based algorithm is smaller
compared with that of the LMS-based algorithm. The laboratory experiments were then carried
out to demonstrate the effectiveness of the RLS-based algorithm. The results prove that the RLS-
based algorithm can measure the target current in the three-phase alternating current system with
the minimum error of 1%. In addition, the RLS-based algorithm is capable to filter gauss white
noise. The standard deviation of the difference between the filtered signal and the real current
signal is 11 A in the parallel and 24 A in the triangular structure. Nevertheless, the filtered result
is not smooth in the first period. Further research is needed to improve this.
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