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Abstract. The stability of positive linear continuous-time and discrete-time systems is analyzed by the use of the decomposition of the state 
matrices into symmetrical and antisymmetrical parts. It is shown that: 1) The state Metzler matrix of positive continuous-time linear system 
is Hurwitz if and only if its symmetrical part is Hurwitz; 2) The state matrix of positive linear discrete-time system is Schur if and only if its 
symmetrical part is Hurwitz. These results are extended to inverse matrices of the state matrices of the positive linear systems.
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The following notation will be used: ℜ – the set of real 
numbers, ℜn£m – the set of n£m real matrices, ℜ+

n£m – the set 
of n£m real matrices with nonnegative entries and ℜ+

n = ℜ+
n£1, 

Mn – the set of n£n Metzler matrices (real matrices with non-
negative off-diagonal entries), In – the n£n identity matrix.

2.	 Preliminaries

Consider the continuous-time linear system

	 x ̇  = Ax,� (1)

where x = x(t) 2 ℜn is the state vector and A = 
£
aij
¤
 2 ℜn£n.

Definition 1. [3, 7] The system (1) is called (internally) positive 
if x(t) 2 ℜ+

n, t ¸ 0 for all x(0) 2 ℜ+
n.

Theorem 1. [3, 7] The system (1) is positive if and only if

	 A 2 Mn.� (2)

Definition 2. [3, 7] The positive system (1) is called asymptot-
ically stable (the matrix A is called Hurwitz) if

	 lim
t→1

x(t) = 0 for all x(0) 2 ℜ+
n .� (3)

Theorem 2. [3, 7] The positive system (1) is asymptotically 
stable if and only if one of the following equivalent conditions 
is satisfied:
1.	All coefficients of the characteristic polynomial

	 det
£
Ins ¡ A

¤
 = sn + an ¡ 1sn ¡ 1 + … + a1s + a0� (4)

are positive, i.e. ai > 0 for i = 0, 1, …, n ¡ 1.

1.	 Introduction

A dynamical system is called positive if its trajectory starting 
from any nonnegative initial state remains forever in the posi-
tive orthant for all nonnegative inputs. An overview of state of 
the art in positive systems theory is given in the monographs 
[1, 3, 7]. A variety of models having positive behavior can be 
found in engineering, especially in electrical circuits [15], eco-
nomics, social sciences, biology and medicine, etc. [3, 7].

The positivity and stability of linear systems have been 
investigated in [2, 5‒6, 8, 9, 16, 17, 22, 23] and of nonlin-
ear systems in [10, 11]. A comparison of the stability of dis-
crete-time and continuous-time linear systems has been given 
in [4]. The stability of interval positive linear systems with state 
matrices in integer and rational powers has been analyzed in 
[14]. The linear systems have been intensively investigated in 
[11, 12‒15, 18‒20] and the descriptor fractional linear systems 
with different fractional orders in [21].

In this paper the asymptotic stability of positive continu-
ous-time and discrete-time linear systems by the decomposition 
of the state matrices into symmetrical and antisymmetrical parts 
will be addressed.

The paper is organized as follows. In Section 2 some prelim-
inaries concerning positive continuous-time and discrete-time 
linear systems are recalled. Decomposition of the state matrices 
of positive linear continuous-time and discrete-time systems in 
symmetrical and antisymmetrical parts and the stability of the 
symmetrical parts are addressed in Section 3. The Comparison 
of the stability of positive continuous-time and discrete-time 
linear systems is presented in Section 4. Some concluding 
remarks are given in Section 5.
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2.	All principal minors M–i, i = 1, …, n of the matrix –A are 
positive, i.e.

	
M–1 = j– a11j > 0, M–2 = j– a11� – a12

– a21� – a22 j > 0, …,

M–n = det
£
– A
¤
 > 0.

� (5)

3.	There exists strictly positive vector λ = 
£
λ1 ¢¢¢ λn

¤T, λk > 0, 
k = 1, …, n such that

	 Aλ < 0 and λTA < 0 .� (6)

Theorem 3. [15] If A 2 Mn is asymptotically stable then

	 –A–1 2 ℜ+
n£n.� (7)

Consider the discrete-time linear system

	 xi+1 = Ax1, i = 0, 1, …� (8)

where xi is the state vector and A = 
£
aij
¤
 2 ℜn£n.

Definition 3. [3, 7] The system (8) is called (internally) positive 
if xi 2 ℜ+

n, i ¸ 0 for all x0 2 ℜ+
n.

Theorem 4. The system (8) is positive if and only if

	 A 2 ℜ+
n£n.� (9)

Definition 4. [3, 7] The positive system (8) is called asymptot-
ically stable (the matrix A is called Schur) if

	 lim
t→1

xi = 0 for all x0 2 ℜ+
n .� (10)

Theorem 5. [3, 7] The positive system (8) is asymptotically 
stable if and only if one of the following equivalent conditions 
is satisfied:
1)	 All coefficients of the characteristic polynomial

	
det

£
In(z + 1) ¡ A

¤
 = zn + an ¡ 1z

n ¡ 1 + … +
det

£
In(z + 1) ¡ A

¤
 + a1z + a0

� (11)

are positive, i.e. ai > 0 for i = 0, 1, …, n ¡ 1.
2)	 All principal minors M ̂

i, i = 1, …, n of the matrix In ¡ A 
are positive, i.e.

	
M ̂

1 = j1 ¡ a11j > 0, M ̂
2 = j 	1 ¡ a11	 – a12

	 – a21	 1 ¡ a22 j > 0,

…, M ̂
n = det

£
In ¡ A

¤
 > 0.

� (12)

3)	 There exists strictly positive vector λ = 
£
λ1 ¢¢¢ λn

¤T, λk > 0, 
k = 1, …, n such that

	 Aλ < λ and λTA < λT.� (13)

Theorem 6. [15] If A 2 ℜ+
n£n is Schur matrix then

	 (In ¡ A)–1 2 ℜ+
n£n.� (14)

Theorem 7. Let sk, k = 1, …, n be the eigenvalues of the matrix 
A 2 ℜn£n. Then:
1) 	–sk, k = 1, …, n are the eigenvalues of the matrix –A,
2)	 sk

–1, k = 1, …, n are the eigenvalues of the inverse matrix 
(det A  6= 0) A–1 2 ℜn£n.

Proof. From the equality

	 – In
£

Inλ ¡ A
¤
 = 

£
In(–λ) ¡ (–A)

¤
� (15)

it follows that det
£
In(–λ) ¡ (–A)

¤
 = 0 if and only if det

£
Inλ ¡  

¡ A
¤
 = 0 since det

£
– In(Inλ ¡ A)

¤
 = (– 1)n det

£
Inλ ¡ A

¤
.

If det A  6= 0 then from the equality

	 –(Aλ)–1
£

Inλ ¡ A
¤
 = 

£
Inλ

–1 ¡ A–1
¤
� (16)

it follows that det
£

Inλ
–1 ¡ A–1

¤
 = 0 if and only if det

£
Inλ ¡  

¡ A
¤
 = 0 since 

det
£

–(Aλ)–1(Inλ ¡ A)
¤
 = det

£
–(Aλ)–1

¤
det

£
Inλ ¡ A

¤
 

and det
£
Aλ
¤–1  6= 0. □

Example 1. The matrix

	 A =  
	–2	 1
	1	 –2

� (17)

with characteristic polynomial

	 det
£
I2λ ¡ A

¤
 = j 	λ + 2	 –1

	 –1	 λ + 2 j = λ2 + 4λ + 3� (18)

has the eigenvalues λ1 = –1, λ2 = –3.
The matrix

	 – A = 
	 2	 –1
	–1	 2

� (19)

with characteristic polynomial

	 det
£
I2λ ¡ (– A)

¤
 = j 	λ ¡ 2	 –1

	 –1	 λ ¡ 2 j = λ2 + 4λ + 3� (20)

has the eigenvalues λ1 = 1, λ2 = 3.
The inverse matrix of (17) has the form

	 A–1 =  1
3

	–2	 –1
	–1	 –2

� (21)
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and its characteristic polynomial

det
£
I2λ ¡ A–1

¤
 = j 	λ +  2

3
	 1

3

	 1
3

	 λ +  2
3
j = λ2 +  4

3
λ +  1

3
� (22)

has the zeros λ1 = –1, λ2 = –1/3.
This confirms the Theorem 7.

3.	 Decomposition of the state matrices into 
symmetrical and antisymmetrical parts

Consider the Metzler matrix A = 
£
aij
¤
 2 Mn which is in general 

case not symmetrical. It is well-known the this matrix can be 
decomposed into symmetrical part As and the antisymmetrical 
part Aa

	 A = As + Aa� (23a)

where

	 As =   A + AT

2
, Aa =   A ¡ AT

2
� (23b)

and T denotes the transpose.
The following properties of the matrices (23b) are well-

known:
1)	 All eigenvalues s–1, …, s–n of the matrix As are real and of the 

matrix Aa = 
£
a ̂ ij
¤
, s ̂ 1, …, s ̂ n are imaginary.

2)	 The trace of the matrix A is

	 trA = trAs = 
i =1

n

∑ aii = 
i =1

n

∑ s–i� (24a)

and

	 trAa = 
i =1

n

∑ a ̂ ii = 
i =1

n

∑ s ̂ i = 0 .� (24b)

Example 2. The Metzler matrix

	 A = 
	– 4	 4
	 2	 – 5

 2 M2� (25a)

can be decomposed into

	

As =   A + AT

2
 =  

	– 4	 3
	 3	 – 5

,

Aa =   A ¡ AT

2
 =  

	 0	 1
	– 1	 0

.

 � (25b)

The eigenvalues of As are real s–1 =  –9 +  37
2

, s–2 =  –9 ¡  37
2

 

and of Aa are imaginary s ̂ 1 = j, s ̂ 2 = – j and trAs = s–1 + s–2 = –9, 
trAa = s ̂ 1 + s ̂ 2 = 0.

Note that the eigenvalues s1 =  –9 +  33
2

, s2 =  –9 ¡  33
2

 of 

the matrix A and of the matrix As, s–1, s–2 are different and satisfy 
the condition trAs = trA = –9 = s–1 + s–2.

Theorem 8. The Metzler matrix A 2 Mn is Hurwitz if and only 
if its symmetrical part As is Hurwitz.

Proof. By Theorem 2 the matrix A 2 Mn is Hurwitz if and only 
if there exists a strictly positive vector λ 2 ℜ+

n such that

	 Aλ < 0 and λTA < 0 .� (26)

Taking into account that (λTA)T = ATλ < 0 and (1, 2) we obtain

	 Asλ =   A + AT

2
λ =   Aλ + ATλ

2
 < 0 .� (27)

Therefore, the Metzler matrix A is Hurwitz if and only if the 
matrix As is Hurwitz. □

Remark 1. If the matrix A = 
£
aij
¤
 2 Mn satisfies the conditions

	

and  
j =1

n

∑ aij < 0  for  i = 1, …, n

and  
i =1

n

∑ aij < 0  for  j = 1, …, n
� (28)

then we may choose the strictly positive vector in the form 
λ = 

£
1, …, 1

¤T 2 ℜ+
n .

Example 3. The Metzler matrix

	 A =  
	– 4	 2	 1
	 3	 – 3	 0
	 3	 1	 – 5

� (29)

is Hurwitz since its characteristic polynomial

	
det

£
I3s ¡ A

¤
 = j 	s + 4	 –2	 –1

	 –1	 s + 1	 0
	 –3	 –1	 s + 5

j =
det

£
I3s ¡ A

¤
 = s3 + 12s2 + 42s + 40

� (30)

has positive coefficients (Theorem 2).
Choosing for the matrix (29) λ = 

£
0.74 0.73 0.70

¤T we 
obtain

	 Aλ =  
	– 4	 2	 1
	 1	 – 3	 0
	 3	 1	 – 5

0.74
0.73
0.70

 =  
– 0.80
– 1.45
– 0.55

� (31a)
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and

	
λTA = 

£
0.74 0.73 0.70

¤
	– 4	 2	 1
	 1	 – 3	 0
	 3	 1	 – 5

 =

λTA = 
£
– 0.13 – 0.01 – 2.76

¤
.

� (31b)

The symmetrical and antisymmetrical parts of the matrix (29) 
have the forms

	

As =   A + AT

2
 =  

	– 4	 1.5	 2
	1.5	 – 3	 0.5
	 2	 0.5	 – 5

,

Aa =   A ¡ AT

2
 = 

	 0	 0.5	 –1
	– 0.5	 0	 – 0.5
	 1	 0.5	 0

.

� (32)

The symmetrical part As is also Hurwitz since for λ = 
£
1 1 1

¤T

	 Asλ =  
	– 4	 1.5	 2
	1.5	 – 3	 0.5
	 2	 0.5	 – 5

1
1
1

 =  
– 0.5
– 1

– 2.5
� (33a)

and its characteristic polynomial 

	
det

£
I3s ¡ A

¤
 = j 	s + 4	 –1.5	 –2

	–1.5	 s + 3	 – 0.5
	 –2	 – 0.5	 s + 5

j =
det

£
I3s ¡ A

¤
 = s3 + 12s2 + 40.5s + 32.75

� (33b)

has positive coefficients. 
Note that the matrix (29) and its symmetrical part As have 

different characteristic polynomials.
To extend Theorem 8 to the discrete-time linear system we 

decomposed the state matrix of the system (8) into the sym-
metrical part

	
Ads =  

Ad + Ad
T

2
 =  

A ¡ In + AT ¡ In

2
 = As ¡ In ,

As =   A + AT

2

� (34)

and the antisymmetrical part

	 Ada =  
Ad ¡ Ad

T

2
 =  

A ¡ In ¡ AT + In

2
 =  

A ¡ AT

2
.� (35)

Theorem 9. The matrix A of the discrete-time system (8) is 
Schur matrix if and only if the matrix As ¡ I is Hurwitz.

Proof. Proof follows immediately from Theorems 8 and the 
decomposition of the matrix into the symmetrical and antisym-
metrical parts. □

Example 4. The matrix

	 A =  
0.4� 0.2
0.4� 0.6

� (36)

has the symmetrical part

	

Ads =   A + AT

2
 ¡ I2 =  

0.4� 0.3
0.3� 0.6

 ¡ 
1� 0
0� 1

 =

Ads =  
	– 0.6	 0.3
	 0.3	 – 0.5

� (37a)

and the antisymmetrical part

	 Ada =  
A ¡ AT

2
 =  

	 0	 – 0.1
	0.1	 0

.� (37b)

The matrix (37a) is Hurwitz Metzler matrix.

Example 5. The matrix

	 A =  
	0.4	 0.1	 0.2
	 0	 0.2	 0.1
	0.1	 0.3	 0.5

� (38)

is Schur matrix since the characteristic polynomial

det
£
I3(z + 1) ¡ A

¤
 = j 	z + 0.6	 – 0.1	 – 0.2

	 0	 z + 0.8	 – 0.1
	 – 0.1	 – 0.3	 z + 0.5

j =
det

£
I3(z + 1) ¡ A

¤
 = z3 + 1.9z2 + 1.13z + 0.205

� (39)

of the matrix A = 
£
I3
¤
 has the positive coefficients (condition 1 

of Theorem 5). The same result we obtain for the matrix (38) 
using the condition 3 of Theorem 5 since for λ = 

£
1 1 1

¤T

	
	0.4	 0.1	 0.2
	 0	 0.2	 0.1
	0.1	 0.3	 0.5

1
1
1

 =  
0.7
0.3
0.9

 <  
1
1
1

.� (40)

Decomposition of the matrix Ad = A ¡ In for (34) in the 
symmetrized and antisymmetrical parts yields
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Ads =   A + AT

2
 ¡ In =  

	0.4	 0.05	 0.15
	0.05	 0.2	 0.2
	0.15	 0.2	 0.5

 ¡

Ads ¡  
	1	 0	 0
	0	 1	 0
	0	 0	 1

 =  
	– 0.6	 0.05	 0.15
	0.05	 – 0.8	 0.2
	0.15	 0.2	 – 0.5

.

� (41a)

	 Ada =   A ¡ AT

2
 ¡ In =  

	 0	 0.05	 0.05
	– 0.05	 0	 – 0.1
	– 0.05	 0.1	 0

.� (41b)

The matrix (41a) is Hurwitz Metzler matrix and the matrix (38) 
is Schur matrix.

Now we shall extend the decomposition into the symmetri-
cal and the antisymmetrical parts the inverse matrix A–1 to the 
Metzler Hurwitz matrix A 2 Mn

	 A–1 = U + V ,� (42a)

where

	 U =  
A–1 + (A–1)T

2
, V =  

A–1 ¡ (A–1)T

2
.� (42b)

Theorem 10. Let A 2 Mn be Hurwitz. Then

	 As
–1λ < 0 for any strictly positive λ 2 ℜ+

n .� (43)

Proof. By Theorem 3  – A–1 2 ℜ+
n£n and A–2 = (– A–1)(– A–1)  

2 ℜ+
n£n.

Premultiplying Aλ < 0 by the matrix A–2 we obtain

	 A–2Aλ = A–1λ < 0 .� (44a)

Similarly, postmultiplying λTA < 0 by A–2 2 ℜ+
n£n we obtain

	 λTAA–2 < 0 and λTA–1 < 0 .� (44b)

Therefore, using (44) we obtain

	 Uλ =  
A–1 + (A–1)T

2
λ < 0 .� (45)

and the condition (43) is satisfied. □

Example 6. The Metzler matrix

	 A =  
	– 4	 4
	2	 – 5

� (46)

is Hurwitz since its characteristic polynomial

det
£
I2s ¡ A

¤
 = j 	s + 4	 – 4

	 – 2	 s + 5 j = s2 + 9s + 12� (47)

has positive coefficients.
The inverse matrix of (46)

	 A–1 =  
	– 4	 4
	2	 – 5

–1

 =  
	– 5

12
	 – 1

3

	– 1
6

	 – 1
3

� (48)

has all negative coefficients and – A–1 2 ℜ+
2£2.

Note that for λ = 
£
1 0.8

¤T we have

	 Aλ =  
	– 4	 4
	2	 – 5

1
0.8

 =  
– 0.8
– 2

 < 0 ,� (49a)

	 A–1λ =  
	– 5

12
	 – 1

3

	– 1
6

	 – 1
3

1
0.8

 =  
– 41

60

– 23
30

 < 0 � (49b)

and

	 λTA–1 = 
£
1 0.8
¤ 	– 5

12
	 – 1

3

	– 1
6

	 – 1
3

 = 
∙

– 23
60

 – 9
15

¸
 < 0 . �(49c)

The symmetrical and antisymmetrical parts of (48) have the 
forms

	

As
–1 =  

A–1 + (A–1)T

2
 =  

	– 5
12

	 – 1
2

	– 1
6

	 – 1
3

,

Aa
–1 =  

A–1 ¡ (A–1)T

2
 =  

	 0	 1
6

	– 1
6

	 0
.

� (50)

and

	 As
–1λ =  

	– 5
12

	 – 1
2

	– 1
2

	 – 1
3

1
0.8

 =  
– 41

60

– 23
30

 < 0 .� (51)

Therefore, the relationship (51) confirms the Theorem 10.
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4.	 Comparison of the stability of positive�   
continuous-time and discrete-time linear systems

Theorem 11. If the eigenvalues λk, k = 1, …, n are the eigen-
values of the matrix A 2 ℜ+

n£n satisfying the condition

	 Reλk > 0 for k = 1, …, n .� (52)

then the matrix

	 –A–1 2 Mn � (53)

is Hurwitz.

Proof. Proof will be accomplished by induction with respect to 
n. For n = 1 the hypothesis is evident since A = a11 > 0 and is 
– A–1 = – 1/a1 2 M1 Hurwitz.

For n = 2 we have A2 =  
a11� a12

a21� a22
 2 ℜ+

2£2, aij ¸ 0, a11 > 0, 

a22 > 0 since λk > 0, k = 1, …, n implies det A = a11a22 ¡ 
¡ a12a21 = λ1λ2 > 0 and

	

–A2
–1 =   1

det A

	 a22	 – a12

	– a21	 a11
 =

–A2
–1 =   1

det A

	– a22	 a12

	a21	 – a11
 2 M2

� (54)

is Hurwitz (Re(–λk)
–1 < 0, k = 1, 2)

Assume that Am 2 ℜ+
m£m, m = 2, 3, …, n satisfies the con-

dition (52). Using the extension method we shall show that 
–  Am

–1 2 Mm is Hurwitz. It is easy to verify that if

	

Am =  

	a11	 a12	 …	 a1m

	a21	 a22	 …	 a2m

	 	 	 …	
	am1	 am2	 …	 amm

 =  
	Am ¡ 1	 A12

	 A21	 amm
,

A12 =  

a1m

a2m

am ¡ 1, m

, A21 = 
£
am1 am2 … am, m ¡ 1

¤

� (55)

then

	
Am

–1 =  
	Am

–1
 ¡ 1 + 

Am
–1

 ¡ 1A12A21Am
–1

 ¡ 1

am
	 –

Am
–1

 ¡ 1A12

am

	 –
A21Am

–1
 ¡ 1

am
	 1

am

,

am = amm ¡ A21Am
–1

 ¡ 1A12 .

� (56)

By assumption if Am ¡ 1 2 ℜ+
(m ¡ 1)£(m ¡ 1) and satisfies (52) then 

– A–1
m ¡ 1  2 Mm ¡ 1 is Hurwitz and from (56) we have –  Am

–1 2 Mm 
is Hurwitz since A12 2 ℜ+

m ¡ 1£1, A21 2 ℜ+
1£m ¡ 1 and am = amm ¡  

¡ A21A
–1
m ¡ 1 A12 > 0.

This completes the proof. □

Example 7. The matrix

	 A =  
	2	 1	 3
	2	 3	 5
	2	 0	 2

 2 ℜ+
3£3� (57)

has the characteristic polynomial

	
det

£
I3s ¡ A

¤
 = j 	s ¡ 2	 –1	 –3

	 –2	 s ¡ 3	 – 5
	 0	 0	 s ¡ 2

j =
det

£
I3s ¡ A

¤
 = s3 ¡ 7s2 + 14s ¡ 8

� (58)

and its zeros s1 = 1, s2 = 2, s3 = 4 satisfy the condition (52).
The inverse matrix of (57) has the form

	 A–1 =  

	– 3
4

	 – 1
4

	 – 1
2

	– 1
2

	 – 1
2

	 – 1
2

	– 0	 – 0	 – 1
2

� (59)

and its characteristic polynomial

	
det

£
I3s ¡ A–1

¤
 = j 	s ¡  3

4
	 1

4
	 1

2

	 1
2

	 s ¡  1
2

	 1
2

	 0	 0	 s ¡  1
2

j =
det

£
I3s ¡ A–1

¤
 = s3 ¡ 7

8
s2 + 7

4
s ¡ 1

8

� (60)

has the zeros s1
–1 = 1, s2

–1 = 1/2, s3
–1 = 1/4.

From (59) we have the matrix

	 – A–1 =  

	– 3
4

	 – 1
4

	 – 1
2

	– 1
2

	 – 1
2

	 – 1
2

	– 0	 – 0	 – 1
2

 2 M3� (61)
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with the eigenvalues s ̂ 1 = –1, s ̂ 2 = – 1/2, s ̂ 3 = – 1/4. Therefore, 
the matrix (61) is Hurwitz Metzler.

Theorem 12. Let the continuous-time linear system (1) with 
the matrix A 2 Mn be positive and Hurwitz. Then:
1)	 The system with the matrix – A 2/ Mn is not positive and 

not Hurwitz;
2)	 The system with the matrix A–1 2/ Mn is not positive but 

Hurwitz;
3)	 The system with the matrix – A–1 2 Mn is positive and not 

Hurwitz.

Proof.
1)	 If A 2 Mn then – A 2/ Mn (is not a Metzler matrix) and by 

condition 1 of Theorem 7 is not Hurwitz.
2)	 If A 2 Mn then A–1 2/ Mn and by condition 2 of Theorem 7 

is not Hurwitz.
3)	 If A 2 Mn then by Theorem 3 the matrix – A–1 2 ℜ+

n£n and 
it is a Metzler matrix. By condition 1) and 2) of Theorem 7 
the eigenvalues of the matrix are located in the right-hand 
side of the complex plane and the system is unstable. □

Example 8. (continuation of Example 6).
The system with the matrix (46) is positive and Hurwitz and 
the matrix – A has the form

	 – A =  
	– 4	 – 4
	– 2	 – 5

 2/ Mn .� (62)

The corresponding system to (62) is not positive and unstable 
since its characteristic polynomial

	 det
£
I2 s ¡ A

¤
 = j 	s ¡ 4	 4

	 2	 s ¡ 5 j = s2 ¡ 9s + 12� (63)

has one negative coefficient.
The inverse matrix (46) has the form (48) and its coeffi-

cients are negative. Therefore, it is not a Metzler matrix.
The characteristic polynomial of the matrix (48)

	det
£
I2s ¡ A–1

¤
 = j 	s +  5

12
	 1

3

	 1
6

	 s +  1
3
j = s2 +  3

4
s +  1

12
� (64)

has positive coefficients and the matrix is Hurwitz.
From (48) we have

	 –A–1 =  
	5
12

� 1
3

	1
6

� 1
3

 2 M2� (65)

The matrix (65) is not Hurwitz since its characteristic poly-
nomial

det
£
I2s ¡ A–1

¤
 = j 	s ¡  5

12
	 – 1

3

	 – 1
6

	 s ¡  1
3
j = s2 + – 3

4
s +  1

12
� (66)

has one negative coefficient.

Theorem 13. Let the discrete-time linear system (8) with the 
matrix A 2 ℜ+

n£n be positive and Schur. Then:
1)	 The system with the matrix – A 2/ ℜ+

n£n is not positive but 
the matrix is Schur;

2)	 The system with the matrix A–1 2/ ℜ+
n£n is not positive and 

the matrix is not Schur;
3)	 The system with the matrix – A–1 2/ ℜ+

n£n is not positive and 
the matrix is not Schur.

Proof.
1)	 If A 2 ℜ+

n£n then – A 2/ ℜ+
n£n and the system is not positive. 

By condition 1 of Theorem 7 if zk is eigenvalue of A then 
– zk is the eigenvalue of – A. The discrete-time system is 
asymptotically stable since the stability of the discrete-time 
linear systems depends only on the moduli of the eigen-
values.

2)	 If A 2 ℜ+
n£n then A–1 2/ ℜ+

n£n and the system is not positive. 
By condition 2 of Theorem 7 if zk is the eigenvalue of A then 
zk

–1 is the eigenvalue of A–1. The discrete-time system with 
the matrix A–1 is unstable since if jzkj < 1 then jzk

–1j > 1.
3)	 The system with the matrix – A–1 is not positive since 

– A–1 2/ ℜ+
n£n. The system is unstable since the eigenvalues 

of the matrix have moduli greater 1. □

Example 9. The discrete-time linear system (8) with the matrix

	 A =  
0.4� 0.1
0.2� 0.3

 2 ℜ+
2£2� (67)

is positive and the matrix is Schur since the characteristic poly-
nomial

	
det

£
I2(z + 1) ¡ A

¤
 = j 	z + 0.6	 – 0.1

	 – 0.2	 z + 0.7 j =
det

£
I2(z + 1) ¡ A

¤
 = z2 + 1.3z + 0.4

� (68)

has positive coefficients.
The inverse matrix of (67) has the form

	 A–1 =  
0.4� 0.1
0.2� 0.3

–1

 =  
–3� –1
–2� –4

 2/ ℜ+
2£2� (69)

and the characteristic polynomial

det
£

I2(z + 1) ¡ A–1
¤
 = j 	z + 0.6	 1

	 2	 z ¡ 3 j =
det

£
I2(z + 1) ¡ A

¤
 = z2 ¡ 5z + 4

� (70)
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has one negative coefficient. Therefore, the system with the 
matrix (69) is not positive and unstable.

From (69) we have

	 –A–1 =  
–3� –1
–2� –4

 2/ ℜ+
2£2� (71)

and the characteristic polynomial

	 det
£

I2z + A–1
¤
 = j 	z + 3	 –1

	 –2	 z + 4 j = z2 + 7z + 10� (72)

has the zeros z1 = – 2, z1 = – 5. Therefore, the system with the 
matrix (71) is not positive and unstable.

The above considerations can be extended to linear systems 
with state matrices in integer and rational powers [13].

4.	 Concluding remarks

The stability of positive linear continuous-time and discrete-time 
systems has been analyzed by the use of the decomposition of 
the state matrices into symmetrical and antisymmetrical parts. 
It has been shown that the state Metzler matrix of positive con-
tinuous-time linear system is Hurwitz if and only if its sym-
metrical is Hurwitz (Theorem 8). Similarly the state matrix of 
positive linear discrete-time system is Schur if and only if its 
symmetrical part A ¡ I is Hurwitz Theorem 9). These results 
have been extended to inverse matrices of the state matrices of 
the positive linear systems (Theorem 10). A comparison of the 
stability of positive continuous-time and discrete-time linear 
systems has been given (Theorems 11, 12). The considerations 
have been illustrated by numerical examples of positive linear 
systems. The considerations can be extended to positive frac-
tional linear systems.
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