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Abstract. The results presented here are twofold. First, a heuristic algorithm is proposed which, through removing some unnecessary arcs

from a digraph, tends to reduce it into an adjoint and thus simplifies the search for a Hamiltonian cycle. Second, a heuristic algorithm for

DNA sequence assembly is proposed, which uses a graph model of the problem instance, and incorporates two independent procedures of

reducing the set of arcs — one of them being the former algorithm. Finally, results of tests of the assembly algorithm on parts of chromosome

arm 2R of Drosophila melanogaster are presented.
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1. Introduction

The problem of searching for a Hamiltonian cycle in a digraph

is in general strongly NP-hard. However, it becomes polyno-

mially solvable if the digraph is an adjoint of some other

directed graph (see e.g. [1, 2]; this rule complies also with

directed line graphs which are a special case of the adjoints).

The latter case is easily solved by transforming the adjoint into

its original graph and then by searching for an Eulerian cycle

within it. (An existence of an Eulerian cycle in the original

directed graph is a necessary and sufficient condition of an

existence of a Hamiltonian cycle in its adjoint [2].) However,

in modeling instances of real-world problems, adjoints are met

rather rarely. The first of the heuristic algorithms proposed

here, tends to reduce a digraph into an adjoint by removing

some unnecessary arcs. Even if the graph does not become

an adjoint, it gets simpler and looking for a solution takes

less time. None of feasible solutions is lost after this reduc-

tion.

The second heuristic algorithm solves one of the most

important problems of computational biology, the DNA se-

quence assembly, well known for its high complexity. The

assembly is the second stage – after the DNA sequencing –

in the process of recognizing genetic information of organ-

isms. Huge amount of erroneous and incomplete data make

the problem very hard to solve and many teams worldwide put

their efforts to provide heuristics producing satisfying semi-

optimal outcomes. The assembly problem can be modeled as

a graph theoretic problem, as searching for a Hamiltonian path

in a certain digraph. Every way of simplifying the input graph

without lost of information is welcome because of shortening

computation time. That is why the algorithm presented here

contains two independent procedures removing arcs unneces-

sary from the point of view of the Hamiltonian path problem.

The results are of high quality, what is proved by a compu-

tational experiment on data generated from chromosome arm

2R of Drosophila melanogaster.

The organization of the paper is as follows. Section 2

contains the description of the first algorithm for graph re-

duction toward simplifying the Hamiltonian cycle problem

(HCP). Section 3 contains the description of the algorithm

for DNA sequence assembly, incorporating the first one. In

Section 4 computational results are discussed. The conclu-

sions are presented in Section 5.

2. Reduction of graphs toward simplifying HCP

Throughout the paper we use a standard terminology from

graph theory, see e.g. [1, 3]. Basically, we are dealing here

with directed graphs (digraphs), for which notions of interest

are defined below.

The Hamiltonian cycle is a cycle in a graph including

every vertex exactly once. The Eulerian cycle is a cycle in-

cluding every arc of a graph exactly once. The 1-graph is a

graph having, for all ordered pairs of vertices (x, y), at most

one arc from vertex x to vertex y. A 1-graph can be represent-

ed as 0-1 adjacency matrix Z, where Z[x, y] = 1 means the

existence of the arc from vertex x to vertex y. In the follow-

ing, using the term “successor” or “predecessor” we always

mean the immediate one.

Definition 1 [1]. The adjoint G = (V,A) of a graph H =
(U, V ) is a 1-graph whose vertices vi represent arcs of H ,

and which has an arc from vi to vj if the terminal endpoint

of the arc in H corresponding to vi is the initial endpoint of

the arc corresponding to vj . (See Fig. 1 for an illustration).

The directed line graph is defined as an adjoint G of a

1-graph H . We say below that a graph is adjointable if it

can be reduced into an adjoint by removing some arcs, with-

out losing any feasible solution to a problem (here being the

Hamiltonian cycle problem).
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Fig. 1. Example of graph H and its adjoint G

Theorem 1 [1]. A 1-graph G = (V,A) is an adjoint if and on-

ly if the following property is satisfied for all pairs x, y ∈ V :

N+(x) ∩ N+(y) 6= ∅ ⇒ N+(x) = N+(y),

where N+(x) is a set of successors of vertex x.

Theorem 2 [2]. Let G be the adjoint of graph H . Then, there

is an Eulerian path/cycle in H if and only if there is a Hamil-

tonian path/cycle in G.

From Theorem 2 it follows that the problem of search-

ing for a Hamiltonian cycle in a digraph, which is in general

strongly NP-complete, becomes easy for adjoints. The moti-

vation of our work was to apply this rule to a wider class

of graphs, which could be reduced into adjoints by removing

some superfluous arcs.

The proposed algorithm accepts as an input any directed

graph and tries to reduce it through a series of removals of

arcs, which for sure will not belong to any feasible solution

of the Hamiltonian cycle problem.

Algorithm 1

Input: A digraph G and matrix M , initially equal to the

adjacency matrix of G.

Output: The reduced digraph G.

(1) Merge identical rows of M into one and assign to it the

vertices assigned to the merged rows.

(2) Merge identical columns of M into one and assign to it

the vertices assigned to the merged columns.

(3) Remove from M all pairs row A + column B satisfying

the condition: on the intersection of A and B there is 1,

and all other entries of A and B are equal to 0. Remove

also all rows and columns containing only 0s.

(4) Count, for every row A, all successors assigned to columns

in which A has 1. If the number of these successors is

equal to the number of vertices assigned to A, then all 1s

in row A must remain, but all other 1s in these columns are

switched to 0. Remove from G all arcs corresponding to

these switched entries. Execute step 4 until there is nothing

to remove according to this rule.

(5) Count, for every column B, all predecessors assigned to

rows in which B has 1. If the number of these predeces-

sors is equal to the number of vertices assigned to B, then

all 1s in column B must remain, but all other 1s in these

rows are switched to 0. Remove from G all arcs corre-

sponding to these switched entries. Execute step 5 until

there is nothing to remove according to this rule.

(6) Repeat steps 4–5 as long as they change M .

(7) Repeat steps 1–6 as long as they change M .

If all rows/columns of matrix M have been removed,

graph G at the end of the algorithm becomes an adjoint, and

then the solution for HCP can be found in polynomial time.

Otherwise, the reduced graph becomes an easier instance for

some (exact or heuristic) algorithm. The following example

visualizes the former case.

Example 1. Let graph G be defined as in Fig. 2. The ini-

tial form of matrix M , equal to the adjacency matrix of G, is

shown in Fig. 3. Next matrices in Fig. 3 follow the consecutive

steps of Algorithm 1, and finally M disappears. Therefore, the

initial graph is adjointable and after the removal of the arcs in

steps 4 and 5 of the algorithm it becomes an adjoint – drawn

in Fig. 4.

Fig. 2. Graph G from Example 1

a b

c d

e f g

Fig. 3. Matrix M from Example 1. (a) Being a copy of the adjacency matrix

of the initial graph. (b) The matrix after steps 1–2 of Algorithm 1. (c) After

step 3. (d) After steps 4–6. (e) After the restart (in step 7) and steps 1–2. (f)

After step 3. (g) After steps 4–6. After next restart and steps 1–3 the matrix

disappears
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Fig. 4. Graph G from Example 1 after the reduction

Proposition 1. Algorithm 1 reduces digraph G without lost

of any feasible solution of the Hamiltonian cycle problem in

this graph.

Proof 1. The only steps changing the initial graph G are steps

4 and 5. If some arc (x, y) removed in step 4 was a part of a

solution of HCP, some other vertex z, for which y is also the

successor, would lose a possibility of having any successor in

the solution and thus no Hamiltonian cycle would be possible

– a contradiction. The same is true for step 5.

Proposition 2. If Algorithm 1 finishes with matrix M reduced

to zero, then graph G after the reduction becomes an adjoint.

Proof 2. The matrix diminishes in steps 1–3. Steps 1 and 2 do

not change the encoded information, only the way of keeping

it. Empty rows and columns removed in step 3 correspond to

vertices satisfying the adjoint’s condition (i.e. the sets of suc-

cessors of a pair of vertices must be the same or disjoint, for

all pairs in the graph), similarly the rows and columns with 1

at their intersection. Steps 4 and 5 by removing unnecessary

arcs leave substructures of the graph which also satisfy the

condition.

If the algorithm ends with matrix M not empty, there

exists a possibility that graph G is adjointable but not com-

pletely reduced by the algorithm (which is a heuristic). An

example for this can be graph G from Fig. 2 with additional

arc (d, g). We see in Fig. 2 that this arc cannot be a part of

any feasible solution of HCP, because using it would end with

short cycle (d, g, e, d). Thus, the modified graph is adjointable

in general (it could look after the arc reduction like the graph

from Fig. 4) but not with the use of the proposed heuristic

algorithm.

3. New algorithm for DNA sequence assembly

3.1. The problem. The problem of DNA sequence assembly

can be defined formally as follows. On the input we have a

multiset of sequences over alphabet {A, C, G, T} (in case

of nucleotide sequences; aminoacid sequences are possible as

well). The input sequences generally have different lengths

(from a few hundred to a few thousand nucleotides) and there

may exist an inclusion relation between them. The solution is

a sequence containing all the input sequences as substrings,

where the criterion of an evaluation of the solution can be

its length (minimized during computations) or its likelihood

(maximized) [4–6].

The input sequences are outcomes of the DNA sequencing

process [7–11]. The goal of the assembly is to compose the

sequences in one resulting sequence in a proper order. Unfor-

tunately, the sequencing outcomes usually contain misread-

ings (insertions, deletions, and substitutions of nucleotides)

coming from biochemical steps as well as from a weakness

of a sequencing program. Thus, inexact matches of sequences

have to be allowed. Of course, to disable accidental overlaps,

some limit of mismatch acceptance must be defined. The input

data can come from one or from both strands of an assembled

fragment of the DNA helix. In the latter case, a part of the

input sequences have the opposite orientation than the others

and they should be matched obeying the rule of complemen-

tarity.

The DNA sequence assembly problem is strongly NP-

hard, even in the case of data without errors and derived from

one DNA strand (compare with Shortest Common Superstring

[12]).

3.2. The assembly algorithm. An older version of the pro-

posed algorithm was successfully tested on real data com-

ing from biological experiments with SARS coronavirus, in

comparison with results generated by two well-known DNA

assembly programs, Phrap and CAP3 [13]. The new version

uses Algorithm 1 described in Section 2 to reduce an exces-

sive number of arcs in the resulting graph. For the purposes

of the current work it is assumed that the data come from the

same DNA strand, since the Hamiltonian path model is used

here.

In the algorithm, a graph is constructed on the base of

the input data and a weighted Hamiltonian path is looked for.

The criterion function maximized during the search is the re-

liability of the path, the reliability being a weight assigned to

every arc in the graph (for the definition of the weight see

next paragraphs). The algorithm can have two parameters:

the minimum overlap and the error bound, being respective-

ly, the minimal number of characters on which neighboring

fragments must overlap in a solution and the limit on the per-

centage of mismatches allowed in overlaps of two neighboring

sequences. Because of these parameters and the incomplete-

ness of the data, the heuristic can return a solution in more

than one part, and to get one output sequence the parts may

be concatenated. In practical applications the concatenation

based on expert knowledge is used.

The method starts with building a multigraph with ver-

tices corresponding to input sequences not contained in oth-

ers (with the number of mismatches not exceeding the al-

lowed percentage). Arcs between a pair of vertices correspond

to possible overlaps of the sequences observing the assumed

error bound. In order to keep reasonable connections of se-

quences only, the error bound should be set to a relatively

small value. The acceptable overlaps are computed by a dy-

namic programming method for the pairwise semiglobal se-

quence alignment (based on the standard method from [4]).

(The semiglobal alignment compares in a best way a suffix
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of the first sequence with a prefix of the second one.) This

method determines all demanded overlaps in an exact way,

but unfortunately it consumes a lot of computation time (see

results in Section 4).

Initially all arcs in the multigraph have weights equal to 1.

A great number of the arcs in the graph represent redundant

information and can be removed. In the first stage of the re-

duction process there are removed all the arcs (i, j) corre-

sponding to a shift dij of sequences i and j, for which such

a vertex k can be found, that there exist two arcs (i, k) and

(k, j) with shifts dik and dkj , respectively, summing up to

dij . (For example, two sequences x = CACCGT and y = GT-

TAA overlap exactly with shift dxy = 4.) Every removed arc

(i, j) adds its weight to the weights of the two arcs (i, k) and

(k, j), in order to increase their reliability. Figure 5 illustrates

this. Of course, the arcs are removed in a descending way (an

arc with the greatest shift first).

Fig. 5. Reduction of redundant information. If dxz = dxy + dyz , then arc

(x, z) is removed and the reliability (weight w) of arcs (x, y) and (y, z)
increases

The second stage of the reduction of the graph is the im-

plementation of Algorithm 1 from Section 2. This algorithm

has been designed for the Hamiltonian cycle problem, howev-

er, applied here it works well – see next section for the results.

(For the purpose of this implementation the multigraph was

temporarily transformed into the 1-graph without weights on

arcs, what did not change a general information on vertex

connections.)

As the first element of the solution path the one is chosen,

which has the worst connection as a successor with other ele-

ments. To find it, the arc of maximum weight from among the

arcs entering a vertex is chosen. Then the arc of the smallest

weight within the set of the best entering arcs in the whole

graph is chosen. If more fragments have such the worst con-

nection, the one having the greatest error (in percentage terms)

of this connection is preferred.

Every next vertex of the constructed path must have the

greatest value of a function f among all not visited yet can-

didates. This function is defined in the following way:

f =
w

lim1
+

w

lim2
where w is the maximum among weights of the arcs from the

last element of the current path to a candidate vertex; lim1
means the greatest weight for the set of arcs leaving the last

vertex and lim2 means the greatest weight for the set of arcs

entering the candidate vertex. Such value of w, which is twice

normalized, gives a good trade-off for an analyzed connection,

from the side of the last vertex of the current path as well as

from the side of its potential successor. If more than one can-

didate have a maximal value of f , the one is chosen, which

has the smallest error (in percentage terms) of the connection

with the last vertex of the current path (concerning the same

arc for which the maximal value of f was calculated). If still

both these criteria are satisfied for more than one vertex, the

winner is chosen in a similar way as for the selection of the

first element of the path.

If there is no arc from the last vertex of the current path

to a not visited one, a next disjoint part of the solution is con-

structed and its first vertex is chosen in a similar way as at

the beginning of the algorithm, but taking into account only

the connections between elements not yet used in the current

solution. When all input fragments are present in the solu-

tion, and it consists of more than one part, the procedure of

reordering them is called. Of course, it is not possible to con-

nect one part with the other constructed later, but the arc may

exist which joins the last vertex of a part with the first vertex

of another part constructed earlier. The procedure searches for

such connections and chooses the ones minimizing the length

of the solution.

Finally, the resulting sequence is printed on the output.

The procedure joins a set of pairwise alignments of neighbor-

ing sequences into some multiple alignment using the major-

ity rule: this character is chosen which appears the greatest

number of times at the considered position of the alignment.

The algorithm from this section can be schematically

written as follows.

Algorithm 2

Input: A set of input sequences (fragments).

Output: A resulting sequence containing all the input ones

(possibly in a few disjoint parts).

(1) Compute all acceptable overlaps of input sequences by a

dynamic programming method.

(2) Build the multigraph with weights on arcs initially equal

to 1.

(3) Reduce the multigraph by removing arcs representing re-

dundant information, simultaneously increasing the relia-

bility (weights) of remaining arcs.

(4) Reduce the multigraph applying Algorithm 1.

(5) Search for a Hamiltonian path maximizing its total weight

(reliability).

(6) Translate the path into the resulting sequence by a multiple

alignment of all input sequences.

4. Computational experiment

The computations were done on a PC station with processor

Intel T2300 1.7 GHz and 1 GB RAM, under Windows XP op-

erating system. The instances for testing were derived from a

string of nucleotides of chromosome arm2R from Drosophila

melanogaster, published by Celera Inc. In the string, 85 se-

quences composed of letters A, C, G and T were distinguished

(they were surrounded by unknown parts of the chromosome).
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Table 1

Results for the assembly algorithm from Section 3. Average values have been calculated for the number of instances as shown in the first column

nInst nFrag nArcIni nArc1st nArc2nd Parts Sim [%] dataTime [s] solTime [s]

all instances

48 571.2 1738.7 1070.0 1051.4 4.2 95.77 3491.9 < 1

instances up to 1000 fragments

39 359.2 1058.4 654.9 644.5 2.8 96.40 1241.3 < 1

instances above 1000 fragments

9 1489.8 4687.0 2869.1 2814.8 10.1 93.10 13244.6 < 1

instances solved in one part

15 86.4 220.7 138.3 136.3 1.0 98.90 87.5 < 1

instances solved in more than one part

33 791.5 2428.7 1493.5 1467.4 5.7 94.30 5039.4 < 1

The original sequences were a basis for input instances for

the assembly algorithm. Every instance come from 10 copies

of an original sequence, cut in random places. The number

of cuts depended on the length of the sequence, and the av-

erage length of the fragments was set to 500 nucleotides.

These values: 10 and 500, were chosen as in real biochemi-

cal experiments for DNA sequence assembly. In instances the

fragments were sorted alphabetically, to lose their real order

within original sequences. Next, from every instance 20% of

the fragments, chosen randomly, were removed.

To the input sequences several errors were introduced: in-

sertions, deletions, and changes of nucleotides. Such errors

are present in real outcomes of the DNA sequencing process.

The total number of introduced errors was set to 2% of to-

tal number of nucleotides in instances. It means, that in every

overlap of two sequences, statistically 4% of positions is erro-

neous. Of course, the condensation of errors in one fragment

may be greater than in other one, therefore the error bound

taken in the algorithm must be greater than the mean value.

In order to introduce errors to sequences, the given number of

erroneous positions (2%) were selected randomly. Next, with

the probability of 1/3 in such a place a randomly chosen nu-

cleotide was inserted, with the probability of 1/3 the selected

nucleotide was deleted, and with the probability of 1/3 the se-

lected nucleotide was exchanged to another one. In the tests,

the error bound value equal to 8% and the maximum overlap

equal to 10 nucleotides were chosen.

The similarity of a generated solution to the original se-

quence was checked by making their global alignment, and

the standard algorithm of Needleman and Wunsch [14] was

used. (Every match of a pair of letters brings to the total sum 1

point, every mismatch or gap brings −1 point.) The similarity

equal to 100% means, that the two sequences are identical.

Headers of columns from Table 1 have the following

meaning:

⊲ nInst The number of instances used in the tests.

⊲ nFrag The average number of fragments in an instance.

⊲ nArcIni The average initial number of arcs in the multi-

graph.

⊲ nArc1st The average number of arcs in the multigraph after

the first stage of the reduction process.

⊲ nArc2nd The average final number of arcs in the multi-

graph.

⊲ Parts The average number of disjoint parts of the resulting

sequence.

⊲ Sim The average similarity of the original and generated

sequences, in percentage terms.

⊲ dataTime The average time of preparing data (finding the

overlaps and building the multigraph), in seconds.

⊲ solTime The average time of constructing solutions (find-

ing the path in the multigraph), in seconds.

Because of a lot of computation time consumed during the

preliminary part of the algorithm (the finding of all feasible

overlaps of sequences with the use of the dynamic program-

ming) not all 85 instances were used in the experiment. The

ones were chosen which contain at most 2000 input fragments

– 48 such instances were present. The results are listed in Ta-

ble 1. The first row with results in the table represents all 48

tested instances. Next rows contain results of the same tests

but grouped according to a certain parameter.

In the case of instances solved in more than one part,

the longest component found was chosen for the comparison

with the original sequence by the global pairwise alignment

algorithm (thus the similarities are in fact smaller than they

would be after incorporating an additional knowledge coming

from new experiments or from experts). However, in spite of

a few disconnected parts of many solutions the similarity is

very high, because such solutions usually consist of one long

sequence and a few very short fragments. Probably the reason

is that the condensation of errors within those fragments is

greater than the allowed limit.

If the similarity of the generated sequences to the original

ones reaches about 98%, it can be interpreted as the optimum

because of errors introduced to the instances. Therefore, most

of the instances have been solved optimally, in fact only 5 out

of 48 instances resulted in the similarity lower than 98%, in

spite of many disjoint parts of the solutions. Moreover, the

procedure of finding the path took less than one second. Also

the reduction stage has proved its quality – the final number

of arcs in a graph was almost half of their initial cardinality.

The first part of the reduction stage has appeared to be more

significant, but also the second one removed a few addition-

al arcs.
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5. Conclusions

In the paper two independent results have been presented.

First, the heuristic algorithm reducing graphs toward sim-

plifying the Hamiltonian cycle problem, without losing any

feasible solution. Second, the DNA assembly algorithm, suc-

cesfully tested on instances generated from the genome of

Drosophila melanogaster, including two procedures of remov-

ing unnecessary arcs from a graph modeling the input da-

ta. Further work can embrace them both. The first algorithm

could be tested in a computational experiment on some ran-

dom graphs, in order to check its usefulness in applications

other than the bioinformatics. The second one can be im-

proved in the initial procedure of finding all possible overlaps

of sequences, which is now too time consuming to be used

for real-world data.
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