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Navigation of humanoids by a hybridized
regression-adaptive particle swarm
optimization approach

PRIYADARSHI BIPLAB KUMAR, CHINMAYA SAHU and DAYAL R. PARHI

In the era of humanoid robotics, navigation and path planning of humanoids in complex en-
vironments have always remained as one of the most promising area of research. In this paper, a
novel hybridized navigational controller is proposed using the logic of both classical technique
and computational intelligence for path planning of humanoids. The proposed navigational con-
troller is a hybridization of regression analysis with adaptive particle swarm optimization. The
inputs given to the regression controller are in the forms of obstacle distances, and the output
of the regression controller is interim turning angle. The output interim turning angle is again
fed to the adaptive particle swarm optimization controller along with other inputs. The output
of the adaptive particle swarm optimization controller termed as final turning angle acts as the
directing factor for smooth navigation of humanoids in a complex environment. The proposed
navigational controller is tested for single as well as multiple humanoids in both simulation
and experimental environments. The results obtained from both the environments are compared
against each other, and a good agreement between them is observed. Finally, the proposed hy-
bridization technique is also tested against other existing navigational approaches for validation
of better efficiency.
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1. Introduction

With the development of science and technology, robots are becoming an
integral part of human life. Robots are used in several forms in various indus-
tries dealing with manufacturing, surgery, medical assistance, defense, etc. The
ability to mimic the human behaviour makes the humanoid robots more flexi-
ble than other forms of robots. Humanoids have the compatibility of working
in a platform used by the humans, and they can replace the human efforts if re-
quired. A humanoid robot needs to be equipped with computational intelligence
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to negotiate with obstacles present in a complex terrain. Over the last few years,
several researchers have attempted the analysis of path planning and navigation
of several forms of robots.

Mohanty et al. (Mohanty et al. 2013; Mohanty et al. 2016; Mohanty et al.
2014) have developed several navigational techniques for path planning of mo-
bile robots using artificial intelligence (Al). They discussed modification of con-
trolling parameters of basic intelligent algorithms for performance improvement.
Singh et al. (Singh et al. 2009; Singh et al. 2011; Parhi et al. 2009) have discussed
about use of computational intelligence for smooth and collision free path gen-
eration for wheeled mobile robots. Hugel and Jouandeaue (2012) developed a
3D LIP model for the walking pattern of humanoid robots. They have assumed
a model without any torque in the support phase and predefined the center of
mass of the robot. Sadedel et al. (2014) used hip and foot trajectories to pro-
pose an offline path planning approach for 2D humanoid robots. They verified
the stability condition of the robot along with incorporation of genetic algorithm
for safe walking pattern generation. Karkowski et al. (2016) developed a real
time path planning approach for humanoids using A* algorithm and adaptive 3D
action set. They formulated a systematic step search by considering the height
information. Ido et al. (2009) proposed a view based navigation of humanoids.
They used the motion capture data as input to a view based sequence and an-
alyzed quantitative effect on walking pattern. Dalibard et al. (2013) proposed
a randomized algorithm for the dynamic walking of the humanoids by gener-
ating a collision free path. Clever and Mombaur (2016) introduced a motion
transfer scheme from humans to humanoids based on inverse optimal control
scheme. They extracted the motion parameters from human walking and used
them in humanoid walking. Mirjalili et al. (2016) proposed online path plan-
ning approaches for SURENA-III humanoid robot based on control schemes.
They calculated the required joint torques by considering an inverted pendulum
model by replacing the conventional whole body dynamic model. Shakiba et
al. (2013) modified the basic particle swarm optimization (PSO) technique by
adding Ferguson splines to it and used the revised algorithm to generate colli-
sion free path for soccer playing humanoids. Perrin et al. (2011) discussed an
equivalence between different footstep planning approaches to enable classical
motion planning techniques to be applied to humanoid path planning. Ryu et al.
(2013) used natural path generated by humans to use in waypoint based path gen-
eration for humanoids. Shimizu and Sugihara (2012) proposed a path planning
approach for humanoids based on transitional sequence of the double support
phase. Fen et al. (2012) improved basic ant colony based optimization (ACO)
technique for path planning of a humanoid manipulator. Kanoun et al. (2011)
developed a path planning approach for humanoids based on foot placements.
They considered a virtual kinematic tree as an inverse kinematics problem to
generate the data required for motion planning. Schmid and Woern (2005) used



NAVIGATION OF HUMANOIDS BY A HYBRIDIZED REGRESSION-ADAPTIVE
PARTICLE SWARM OPTIMIZATION APPROACH 351

NURBS curve to generate smooth and collision free path for humanoids. Niski-
waki et al. (2012) used a laser range finder to navigate humanoids in a complex
environment. Yoo and Kim (2015) developed a gaze control based architecture
for navigation of humanoid robots in complex environments. They modified the
unscented Kalman filter based controller and synchronized the filter into walk-
ing pattern. The research based on navigation and path planning is primarily
focused on mobile robots. A very less number of works have been reported on
the navigation of humanoid robots. Although some of the researchers have at-
tempted navigation of humanoid robots, there are some limitations associated
with their approaches regarding specific environmental conditions. Along with
that, the navigation of multiple humanoid robots in a single environment clut-
tered with obstacles is rarely reported in the available literatures according to the
authors’ knowledge.

The use of individual Al techniques for the path planning of humanoids may
not always be self-sufficient to work in a dynamic and cluttered environment.
Therefore, hybridization is attempted using multiple techniques to improve the
limitations of the standalone methods. Hybridization has been attempted by sev-
eral researchers in the past. Chaari et al. (2012) have formulated a hybrid tech-
nique for the path optimization of a mobile robot. They hybridized ant colony
optimization with genetic algorithm (GA) to get a smart path while solving the
global path optimization problem. Huang et al. (2015) have described a meta-
heuristic hybridization method for four wheeled mobile robots. They used a
Taguchi based method to obtain an optimized path with obstacle avoidance.
Contreras-Cruz et al. (2015) have given a novel thought to develop a hybrid al-
gorithm to solve the path planning problem for mobile robots by combining the
artificial bee colony algorithm with evolutionary programming algorithm. The
path length obtained by the proposed method is compared with a classical road
map method, and a better performance has been observed. Das et al. (2016) have
proposed a hybrid method combining particle swarm optimization with gravita-
tional search algorithm (GSA) for path planning of multiple mobile robots. The
adaptive parameters exploration and exploitation have maintained the algorithm
balanced by the proposed hybrid algorithm. Gigras et al. (2015) have focused on
a hybrid technique to solve the path planning problems by using the metaheuris-
tic methods like ant colony optimization and particle swarm optimization. They
used the hybrid technique to optimize the path of a robot in cluttered environ-
ments avoiding the obstacles.

The literature citations suggest that the hybridization of standalone methods
are primarily attempted with mobile robots. However, the use of hybrid tech-
niques in case of humanoid robots is very rare to find. Based on the above re-
search gap available, the objective of the current investigation is set as the design
and implementation of a novel navigational controller that can be used to navi-
gate single as well as multiple humanoid robots in a complex environment with
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optimization of path and time taken to reach the desired destination. In the cur-
rent analysis, hybridization is attempted between regression analysis (RA) and
adaptive particle swarm optimization (APSO). Humanoid NAOs are used in the
current analysis for the navigational purposes.

2. Humanoid NAO

Humanoid NAO is a small sized programmable robot designed by Aldebaran
Robotics group, France. NAO has been evolved in several versions, and version
V4 has been used in the current work. The NAO is of 58 cm height, 5 kg weight
and is equipped with several sensors (Kofinas et al. 2013) such as sonars, infrared
sensors, accelerometers, gyroscope, force sensitive resistors, etc. Encoders are
also fitted with the NAO so that the value of the joint torques and the force exerted
on the ground can be recorded in any time. NAO can be coded and controlled
with Python language with the help of choregraphe interface developed by the
designers of NAO. In the current analysis, navigation is attempted using single
as well as multiple NAOs. Figure 1 represents a typical humanoid NAO.

k ‘i"‘ +
Figure 1: A typical humanoid NAO

3. General overview of regression analysis

Being a statistical approach of data forecasting, regression analysis serves as
a method for establishing relationship among dependent and independent vari-
ables. In regression analysis, dependent variables are not represented directly
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linear to the independent ones; rather they are represented as linear to some vari-
ables that are related to the independent variables. A general equation of regres-
sion can be represented as follows.

vi=ay+axyxi+e, i=1,2,3...n. (1)

In the above equation, y; is a dependent variable and x; is an independent
variable with parameters as a; and a; and e; represents an error form. Here, y; is
represented linear to the values of x;. Figure 2 represents the scheme of a basic
linear regression.
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Figure 2: Representation of a linear regression

In the x-axis, ranges have been taken from —20 to 60. In the y-axis, ranges
have been taken from O to 15. The straight line shows the basic equation of
regression. The most significant feature of regression is the accumulation of the
scattered data into an equation form. In context to navigational problem, the
inputs of the problem can be fed to the regression controller and based on the
previous training pattern; the controller generates an output solution.

4. General overview of adaptive particle swarm optimization

Robots are equipped with logics of artificial intelligent techniques to improve
their decision taking ability. Particle Swarm Optimization is known to produce
better results than other intelligent navigation techniques. PSO is a population
based metaheuristic approach inspired by nature. It is adopted from the bird
flocking or fish schooling behaviour. The group of entities that form the pop-
ulation in PSO are called as swarms, and the individual entities of the swarm
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are known as particles. As PSO is a population based method, it is assumed
that all the particles in the population are moving in a definite search space and
their position and velocity are recorded at each step. All the particles save their
best position which is communicated through the entire population. During the
optimization process, the velocity and position parameters are updated as the
following governing equations.

vi(j+1) = wvi(j) + crranl(Popess — pi) + c2ran2(Pyipess — i),
pi(j+1) = pi+vi(j+1).

To enhance the performance of basic PSO, some modifications are adopted
in the control parameters which finally turns into APSO. The review of the liter-
atures suggests that several researchers (Clerc & Kennedy 2002; Shi & Eberhart
1998) have attempted to modify different parameters of the basic PSO algorithm.
However, in the APSO algorithm, three parameters such as inertial weight, social
and cognitive parameters can be chosen as the governing parameters to increase
the performance of the basic algorithm. The control of these three parameters are
described in the subsequent sections of the paper.

2)

4.1. Control of inertia weight

Inertia weight w is used to balance the search capabilities of local and global
search of particles in the swarm. The value of w should be different in different
search space. However, it is not advisable to increase the value of w with time. It
is observed that the evolutionary factor f has an influence over w, and f value is
large in the initial search and becomes small. Hence, it is favorable to allow w to
follow a sigmoid function with the evolution factor f. Again taking in to account
the value of w should be in between 0.4 and 0.9, the equation will be as follows.

1

T 1 Lde 24T 3)

w(f)

dg - drnin

where [ = € (0,1), dg — the distance of best particle from the con-

. dmax - dmin . . . .
sidered particle, dpax — maximum distance of best particle from the considered

particle, dp,;, — minimum distance of best particle from the considered particle.

4.2. Control of acceleration coefficients

Here, an adaptive control is implemented by controlling the parameters ¢
and c;. The parameter ¢; symbolizes self-cognition and ¢, symbolizes social-
influence. Generally, ¢ tries to take the particle to its own historical best position
obtained, while ¢, tries the global optimization of swarm that means it tries for
the convergence of the swarm to its global best position. The total performance
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of the particles in the search space till getting the optimal position is divided in
three scenarios named as investigation, introspection and convergence. In inves-
tigation scenario, all the particles are moving in the search space randomly to get
their local optima. So we can increase the values of ¢; by 50% which helps the
particles to find out their best positions. And decreasing the value of ¢; by 50%
will help them not to create crowed situation as in this phase the primary aim is
to find the local optima, not the global one. In introspection scenario, c¢; value
is increased by 25% which will help the particles to get a local optima or Ppeg.
At the same time, ¢, value can be increased by 10% so that it will move towards
the global optima but not reach to the global optimum state. In convergence sce-
nario, c¢; value can be decreased by 40% while increasing the ¢, value by 40%
as till now all the swarms will have their local optima. So ¢ value has less effect
on that, and by increasing the c¢; value, the global optima Py, can be obtained
in this state.

To apply the APSO algorithm in the navigation problem, a fitness function
has to be defined considering the optimization of the path. The proficiency of
any path optimization algorithm is dependent on two aspects. The robot has to
create a safe path by avoiding the obstacles, and the robot has to reach the goal
position in shortest possible time with path optimization.

5. Control architecture for humanoid NAO

The proposed navigational controller is based on the hybridization of basic
regression analysis with APSO algorithm. Hence, it considers the control archi-
tecture of both the algorithms.

5.1. Regression analyis (RA) controller

A humanoid robot navigation is based upon several governing parameters
such as Left Obstacle Distance (LOD), Right Obstacle Distance (ROD), Front
Obstacle Distance (FOD) and Turning Angle (TA). LOD, ROD and FOD act
as the input parameters for the robot and TA acts as the output parameter. The
microprocessor of the robot records the input data by the help of the sensors
which sense and calculate the obstacle distances. Figure 3 represents the position
of NAO in the environment with the obstacles present around.

Regression analysis is a basic technique of data forecasting in which previosu
pattern is used to tackle a new situation. To implement the RA controller, the
humanoid robot needs to be trained with a data pool. While designing the nav-
igational controller for a humanoid robot, several reactive behaviours are also
considered that help in optimization of the path. Those are obstacle avoidance
behaviour, goal following behaviour and barrier following behaviour. In obstacle
avoidance behaviour, whenever the sensors of the humanoid detect any obstacle
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Figure 3: Initial position of the NAO in the environment

TARGET

in their path, the humanoid takes the necessary turn to avoid the obstacle. In goal
following behaviour, in absence of any obstacle in the path, the humanoid will
always be directed towards the goal. The third one, barrier following behaviour
is a complimentary behaviour. If in the path, a long barrier or wall is present and
the goal of the humanoid is set at the end of the barrier, then, the humanoid sim-
ply follows the barrier without activation of the control algorithm. In this way,
the humanoid reduces the consumption of energy and simultaneously optimizes
the path.

A data pool of 500 samples is generated for the RA controller in which care
is taken to provide almost all possible combinations of obstacle distances and
necessary turning angle to the humanoid. The RA controller is fed with all the
training pattern data, and the regression toolbox of the Minitab software (Khan
2013) is used to generate a standard equation of regression that can be used
for the analysis. Minitab software takes into account the values of data pool as
input and output parameters and based on the pattern of output and input data it
generates a straight line equation which can also be termed as basic curve fitting.
Figure 2 can also be referenced as the scheme of curve fitting. The equation
generated for the current research is as follows.

Ky = —23.0228 — 0.006183K; — 0.28508K, +0.786367K3,, 4)

where K1 = FOD, K; = LOD, K3 = ROD, K4 = TA.

The above equation serves as the governing equation that can be used for
navigation. The sensors of the humanoid measure the obstacle distances and the
turning angle is generated as per the above equation.
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5.2. Calculation of objective function using APSO

To apply any artificial intelligent algorithm for navigational purpose, it is
required to formulate a fitness function/objective function based on the naviga-
tional parameters associated with the robot. The objective function formulated
by using the APSO algorithm should satisfy two conditions; obstacle avoidance
and target seeking. Based on the objective function only, the humanoids will
move forward. While the humanoid starts its journey towards the target, it will
map its shortest distance to the target and take steps one by one without apply-
ing any navigational algorithm. While its sensors detect any obstacle, it will stop
and the implemented algorithm works which optimizes the path by avoiding the
obstacles present in the path and generating a collision free path. Figure 4 il-
lustrates the path of the humanoid in the environment by following the reactive
behaviours.

/ TARGETS \

Activation of APSO Algorithm pyy, X Yg)
X

(%.¥:)

\ Start Point of the Humanoid /

Figure 4: Path of the humanoid using APSO controller

Let the humanoid is at point ‘A’ to begin the journey to the target ‘C’. The
starting coordinate position of the humanoid is marked as A (x,4,y,). From the
same point, it starts its journey and reaches to point B (xp, y,) without using any
navigational algorithm. After getting sensor information regarding presence of
obstacle near the positon ‘B’, it implements the proposed algorithm to decide the
next step. After point ‘B’, many possible points are marked in the figure which
will be a next position for the humanoid, but it goes through the optimized one
with the help of APSO technique. In the swarm, the position of particle having
minimum value of objective function is treated as the optimal position for the
humanoid robot to take a next step. While designing the path for the humanoid
robot, the objective function is influenced by two conditions; avoiding collision
with obstacles present in the environment and reaching to the target/goal in opti-
mum path.
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5.2.1. Objective function to avoid collision with obstacles

This objective function is designed to avoid the head on collision between ob-
stacles (like walls, balls or any dynamic object) and humanoid robot. By consid-
ering the distance between the humanoid robot and obstacles, this is formulated
and defined as follows:

0, Qi — Obsj|| > ny, j=1,2,....m,

Jobstacle = 1 1 ' ©)
obstacle M_n_h7 ||Qi—0bsj||<nth7 ]:1,27...1’1’1.
i J 4

where Q; — the position of the i-th particle in the swarm (i.e., the possible optimal
step/position), obs j — the center of the j-th obstacles, n'" — the threshold distance
between the humanoid to obstacles, m — the numbers of obstacles.

In the current work, the threshold distance is chosen as 35 cm. The main
objective here is to minimize the value of objective function fypsacle to get an
optimized position. The maximum allowable value of the distance between robot
and obstacle in n,, to avoid collision with obstacles. As per the equation, we will
get a non-zero value of objective function while the humanoid robot is at a very
nearer position to the obstacles; otherwise, it will be zero.

Here we have considered the nearest obstacle present to the robot and the
same can be evaluated by the following equation:

DiSt}’Ob—Oij = minimum HRobb — Obst , j=12,..m, (6)

where Rob;, denotes the position of humanoid at point ‘B’, which will be varied
according to the various environmental conditions.

5.2.2. Objective function for target seeking behaviour

The main aim in designing this objective function is to reach the target with
a minimum path, and that is accomplished by considering the distance between
the humanoid robot and its goal. The function is formulated as follows.

ftarget: ||Qi_G||7 (7)

where Q; — the position of the i particle in the swarm (i.e., the possible optimal
step/position), and G — position of the target.

Here, the objective is to minimize the distance between the target and the
possible optimal positions of the humanoid robot. So the total objective function
to optimize the path optimization strategy of the humanoid can be formulated by
combining the above two objective functions as follows:

fm - 6fobstacle + (Pftarget ) (8)

where 0 and ¢ represents the parameters that influence the path of humanoid
robot, f,, denotes the fitness value for the M numbers of population. Here, the
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controlling parameters or weight parameters (6 and ¢) have been chosen by trial
and error method, and their values are kept between O to 1.

The value of f,psacie 18 zero until any obstacle is not in the range of the sensor
of humanoid robot, and it will navigate freely to the target without any hurdles.
But after detection of an obstacle, the f, ¢ Value becomes a non-zero quantity.
In this condition, the APSO algorithm will be executed by the humanoid robot.
Here, inside the algorithm, the particles with their fitness values will be arranged
in ascending order and particle having lowest objective function value is taken
as the new best position for the humanoid robot.

6. Design of Petri-Net controller to avoid inter-collison

Peterson (1981) has demonstrated the design of a Petri-Net controller that
is required to avoid inter-collision among multiple robots in a dynamic envi-
ronment. In the current analysis, three humanoid NAOs are considered where
each NAO acts as a dynamic obstacle to the other. Figure 5 represents a standard
method for design of a Petri-Net controller.

Position-3

Position-2 Position-4

Position-5

Figure 5: Designed Petri-Net controller for multiple humanoid robots

Position of a robot is represented as a circle, state of transition is shown by a
bar symbol, token location represents the current position of the robot. Six posi-
tions of the robot are described in the model. In Petri-Net model, there is a token
at the first position. It is assumed that all the robots are standing randomly in
the environment initially without knowing each other’s positions. After starting
the journey to reach the target, they will try to avoid the obstacles and trace one
another, which is the “Position-2” of the model. Detecting the dynamic obstacles
comes in “Position-3”. At this position, they have to set the priority of the robot
about which one to wait and which one to move first. The priority should be
given to the robot having a less distance left to reach the target. The robot with
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higher priority goes further, and the other one has to stop (treated as static obsta-
cle) until first robot leaves the place. That indicates the negotiating situation of
the two robots denoted as “Position-4” in the model. Next step of the robots after
negotiating is to check for any other conflicting situations. If there is no such
situation, the robot will move forward. That condition is named as “Position-5".
The last situation “Position-6” is a waiting condition. If any robot encounters
two other robots already in a situation of conflict (both the robots in “Position-
3”), then by giving them a higher priority, the robot has to behave as a static
obstacle as having lower priority After both the other robots start their journey
towards their goal, this robot in “Position-6" will then start its journey takmg
the “Position-2”. Considering all these conditions, multiple robots can move in
a clutter environment easily without making any complexity in their path which
optimizes the time taken to reach the goal.

7. RA-APSO hybrid controller

To increase the efficiency of the standalone algorithms, the hybridization
technique has been designed and implemented in the navigational controller.
In the current analysis, RA controller is hybridized with APSO controller. For
the regression analysis, there are three numbers of input parameters (FOD, LOD
and ROD) and one output parameter, i.e. turning angle. To hybridize the algo-
rithm with APSO, the output from RA controller is taken as the input for the
APSO algorithm, i.e. named as interim turning angle (ITA). With ITA, the in-
stant values of FOD, LOD, and ROD are also taken as the input values for APSO
method. The final output from the APSO controller is final turning angle (FTA)
that guides the humanoids to navigate smoothly in the environment. Figure 6
represents the scheme of hybridization.

Regression
Analysis

LOD
Controller .
ROD Adaptive
Particle Swarm FTA
FOD Optimization
LOD Controller
ROD

Figure 6: Proposed RA-APSO navigational controller

It can be noticed that the proposed controller works on a two-step hybridiza-
tion basis. Initially, after detection of obstacle in the path, the input parameters
are fed to the RA controller and the output of the RA controller is again fed to
the APSO controller for generation of the final output.
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The steps for the hybridization process are discussed below.

Step-1: Define the start and goal position of the humanoid robot.

Step-2: Navigate the robot towards its target until it is obstructed by any
obstacle.

Step-3: Call RA algorithm when any obstacle comes in the target path.

Step-4: Sensory data regarding FOD, LOD, ROD are fed to the RA con-
troller, and output (ITA) is evaluated.

Step-5: Initialize, the swarm of particles in the search field of the humanoid
robot by taking ITA as input parameter.

Step-6: Evaluate the fitness value for every particle; sort the particles in as-
cending order, if the fitness value is better than the best fitness value of ITA Set
current value as the new ITA.

Step-7: Choose the particle with the best fitness value of all the particles as
the ITA, for each particle calculate particle velocity and position. And calculate
next optimum position, Calculate FTA.

Step-8: Move the humanoid robot to the new optimal position according to
the FTA.

Step-9: Repeat the step-4 to step-8 until the humanoid robot reaches to the
target by avoiding all the obstacles.

Figure 7 represents the pseudo code for the RA-APSO algorithm.

Start
Feed the input parameters to the RA controller
Calculate the ITA
Feed ITA to APSO algorithm and activate APSO Controller
For each particle
Initialize the particles in the swarm

Do
For each particle
Calculate fitness value
If
The fitness value is better than the best fitness value Ppbest
Set current value as the new Pppest
Else
Calculate the fitness value again
End
Do
Choose the particle with the best fitness value of all the particles as the P gyest
For each particle
Calculate Particle velocity by equation
Calculate Particle position by equation
End
While maximum iteration is reached or minimum error condition satisfied
Stop

Figure 7: Pseudo code of RA-APSO algorithm
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The detailed process of humanoid navigation can be represented by a flow
chart. Figure 8 represents the flowchart for the navigation of humanoids by the
proposed RA-APSO algorithm.

h 4
Initialize the start and target position ofthe humanoid

y

Humanoid proceeds towards the target

Isthere any
obstacle
Presentin the
path?

Has the robof
reachedits

Activate RA-APSO algorithm

L 2
Initialize the parameters of RA-APSO algorithm

A 4
Calculate the evolutionary and control parameters of thealgorithm
A
Feedthe input parameters to the RA-APSO controller
v
Calculate the required turningangle as the output

v

Activate the reactive behaviour

¥

Proceed accordingly

astherobo
Reachedits
destination’

1'% Yes

Show the optimal
path animation

Figure 8: Flowchart of the control scheme of RA-APSO controller
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8. Navigation using RA-APSO controller

After designing the control architecture for the path planning of the humanoid
robots and the Petri-Net controller for avoiding inter-collision among multiple
humanoids, the proposed navigational controller was tested for both simulation
and experimental environments. It is to be noted that the Petri-Net controller is
required when multiple humanoids navigate simultaneously in a common plat-
form. For the navigation of a single humanoid NAO, it is not required. The pur-
pose of this section is to check the RA-APSO navigational controller for a sim-
ulation as well as experimental platform. Finally, after the execution of the con-
troller in both the platforms, a comparison is aimed for the validation between
the simulation and experimental results.

8.1. Navigation of Single Humanoid NAO in a Complex Environment

Several number of simulation software have been developed over the past
years. In the current work, V-REP is chosen as the simulation software to be used.
The idea behind using V-REP as the simulation software is that for humanoid
navigation, it works as an easy and suitable software. V-REP follows the pro-
gramming language LUA based on the ANSI C language. Specific unique prop-
erties like collision detection, better motion planning and calculation of shortest
path makes V-REP more potential candidate than other software. To analyze the
effectiveness of regression navigational controller, a static environment has been
created in the V-REP software. It has to be kept in mind that the working of the
navigational controller must be based on the reactive behaviours such as obstacle
avoidance, goal following and barrier following. For navigational analysis of the
humanoid NAO, an environment has been created in the simulation window of
V-REP software. The environment size was chosen as 200 x 250 units with five
numbers of static obstacles. By considering the reactive behaviours and logic of
RA-APSO controller, a program has been written and implemented in the NAO
humanoid. After implementing necessary rules and regulations, obstacle avoid-
ance, goal following behaviours were tested. The main objective of navigational
analysis is to observe the shortest path calculation and time taken to reach the de-
sired target. Figure 9 represents the simulation results obtained from the V-REP
software.

It can be observed from Figure 9a that initially, the NAO was set at a source
point and a specific destination point was provided. The two blue boxes repre-
sent the source point and target point. Five number of static obstacles were set at
random positions. It was observed that by using the proposed RA-APSO naviga-
tional controller, NAO was able to avoid all the obstacles those were present in
the path and reach the desired target safely. During the journey from Figure 9a
to Figure 9g, it can be observed that the humanoid has followed the shortest pos-
sible path. The distance covered by the humanoid to reach the destination and
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Figure 9: Illustration of navigation of single NAO in simulated environment

the time consumed to reach the target were noted from the V-REP simulation
window itself and recorded for further analysis.

To validate the effectiveness of the proposed controller, it is important to re-
peat the simulation results in an actual environment. By creating an exactly sim-
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ilar environment under laboratory set up, the simulation results can be compared
for practical implementation. A similar environment as was in the case of the
simulation software was created under laboratory set up. To maintain the same
environment size, the actual platform to conduct the experiment was chosen as
200 x 250 centimeters. Five numbers of static obstacles were selected and placed
at same positions as that of the simulation environment. An initial and final point
of the experiment was decided. By using the logic of the reactive behaviours and
RA-APSO controller, a program was written and implemented in the humanoid
NAO. In the actual environment, the NAO was operated by a Wi-Fi control. The
robot location is defined according to the movement of the robot from the start to
the target point, position of the target, location of the corners and the sidebars of
the arena. After the environment was set up, the navigation of NAO was observed
and analyzed. Figure 10 represents the actual experiment that was performed in
our laboratory.

The two blue boxes represent the source and target positions in the Fig-
ure 10a. Five numbers of static obstacles as represented by white boxes were
set at the exact similar positions as was in case of simulation. After the environ-
ment was set up, the NAO was started for its navigation. It was observed that
the humanoid NAO was able to avoid all the obstacles that were present in the
path and reach the desired target safely. It can be observed from Figure 10a to
Figure 10f, that the humanoid has followed the shortest possible route. In the
actual environment, the path length from source to target as travelled by the hu-
manoid was measured by using a measuring tape, and a stopwatch measured the
time taken to reach the target. The path length and time taken were noted and
recorded for the comparison between the simulation and experimental results.
As stated earlier, the effectiveness of the proposed navigational controller can
only be checked by the proper comparison between the simulation and experi-
mental results regarding the navigational parameters, which are the path length
and time taken. Table 1 and Table 2 represent the comparison between the sim-
ulation and experimental results for path length and time taken respectively. It
is to be noted that quite large number of experiments were performed for the
navigational control of humanoid NAO using regression analysis and only a few
have been analyzed here.

From Tables 1 and Table 2, it can be noticed that the navigational parame-
ters for the experiments always show higher values than the simulation results.
The simulation results are ideal ones where there are no errors like loss of data
transmission, effects of friction, etc. When the humanoid navigates in a practical
environment, it is influenced by several external factors like loss in Wi-Fi data
transmission, presence of friction, slipping effects at the contact point between
the foot of the humanoid and floor, etc. These factors increase the navigational
parameters to some extent. After recording both the simulation and experimen-
tal results, the percentage of errors were calculated. It was observed that in all
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Figure 10: Illustration of navigation of single NAO in experimental environment

cases, the error percentage was within 7%, which is well below the acceptable
limit.

Path planning and navigation of multiple humanoids is way too challenging
than the navigation of a single humanoid. The reason behind the above case is
that, in single humanoid problem, the environment is a static one and when mul-
tiple humanoids navigate, it becomes a dynamic one. In a dynamic environment,
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Table 1: Comparison of path length between simulation and experiment
for navigation of single NAO

No. Simulated path Experimental path Error
of runs length (cm) length (cm) in %
1 279.52 294.8 5.18
2 279.75 293.0 4.52
3 279.04 291.9 4.4
4 277.52 292.8 5.22
5 277.79 294.4 5.64
6 278.98 291.5 4.3
7 280.32 293.6 4.52
8 278.28 292.2 4.76
9 277.92 291.3 4.59
10 278.7 293.3 4.98
Average 278.782 292.88 4.811

Table 2: Comparison of time taken between simulation and experiment for
navigation of single NAO

No. Time required Time required Error
of runs in simulation (sec) in experiment (sec) in %

1 35.14 37.5 6.29

2 35.54 36.85 3.55

3 34.46 35.81 3.77

4 35.12 37.15 5.46

5 33.58 35.23 4.68

6 34.37 35.44 3.02

7 35.84 37.53 4.5

8 33.98 36.18 6.08

9 33.47 35.17 4.83

10 34.24 36.14 5.26
Average 34.574 36.5 4.765

each humanoid has to avoid the static obstacles that are present in the path and
the dynamic fellow humanoids, which are navigating, simultaneously in the same
platform.
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8.2. Navigation of multiple humanoid NAOs in a complex environment

For the simulation of multiple humanoids, V-REP was again selected as the
simulation software. In the current work of navigation of multiple humanoid
robots, we have considered three humanoid NAOs in a single environment. The
environment size is kept exactly same as was done for single humanoid navi-
gation. Four static obstacle are considered in the analysis at random positions.
Each humanoid has its own predefined source and goal position. It has to be kept
in mind that the rules of RA-APSO navigational controller can avoid the obsta-
cles but not decide regarding the priorities if a conflicting situation arise. There-
fore, along with the RA-APSO navigational controller, the logic of the Petri-Net
controller is also considered in the current problem. The working pattern of the
Petri-Net controller has been already described in the previous sections. The en-
vironment size for multiple humanoid navigation is kept as 200 x 250 units with
four numbers of static obstacles. Along with the static obstacles, each humanoid
acts as a dynamic obstacle for the other two. The three humanoid NAOs (de-
noted as N1, N2 and N3) have their predefined source or start positions (denoted
as S1, S2 and S3) and goal or target positions (T1, T2 and T3). A program has
been written in the LUA language using the combined logic and rules of regres-
sion navigational controller and the Petri-Net controller and implemented in all
the humanoids. After the setting of the environment, the three humanoids started
their journey to reach their respective goal positions. Figure 11 illustrates the
simulation environmental set up for the navigation of multiple humanoids and
the navigation of reach humanoid to their respective goals.

It can be observed from Figure 11a that each humanoid has been marked with
their start and goal positions. Then, they started their journey to their respective
goals. In the Figure 11a to Figure 11g, it can be observed that all the humanoids
have avoided both the static as well as dynamic obstacles and reached their tar-
gets safely.

To validate the results of simulation analysis, a practical experimental setup
was developed in the laboratory conditions as was done in case of navigation
of single humanoid robot. The platform size was chosen as 200 x 250 centime-
ters. Four numbers of static obstacles were set at similar positions that of the
simulation. A program was written by using the logic of regression navigational
control and the Petri-Net controller and implemented in all the humanoid NAOs.
After the practical platform was ready, all the humanoids started their journey to-
wards their respective targets. Figure 12 represents the actual setup that has been
used for the experiments and the navigational pattern followed by the multiple
humanoid robots.

From Figure 12a, it can be noticed that all the three humanoids are marked
with their corresponding start and goal positions. After the start signal, all of
them moved forward towards their respective goal positions. It can be seen from
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a) b)

Figure 11: Illustration of navigation of multiple NAOs in simulated environment

Figure 12a to Figure 12g, all the humanoids have avoided the static obstacles
and the inter-collision between them. The navigational parameters such as path
length and time taken are measured in the similar way as was done in case of
single humanoid robot i.e. by measuring tape and stopwatch respectively. Finally,
a comparison was done among the simulation and experimental results, and the
data are presented in Table 3 and Table 4. Table 3 represents a comparison of
path length between the simulated and experimental environments, and Table 4
represents the comparison for time taken between simulated and experimental
environments.
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a) b)

Figure 12: Illustration of navigation of multiple NAOs in experimental environment
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Table 3: Comparison of path length between simulation and experiment for navigation
of multiple NAOs

Simulation results Experimental results B %
No. of runs Path travelled in cm rrors m v
NI N2 N3 NI N2 N3 | NI | N2 | N3

263.15 | 216.1 246.8 | 277.1 | 228.7|258.1 | 5.03 | 5.51 | 4.38
263.34 | 2152 245.7 1 277.2 |228.6 2589 |5 5.86 | 5.1
263.47 | 2154 246.1 | 278.3 | 2284|259 |5.33|5.69|4.98
262.7 215.7 246.2 | 276.8 | 229.1 | 258.4 | 5.09 | 5.85 | 4.72
262.86 |216.12 | 2458|2769 |229.3|259.1|5.07|5.75]|5.13
264.04 | 216.35 |245.6 |277.4 | 2285|2574 |4.82|5.32|4.58
264.17 | 21598 | 246 | 2773 |229 |257.3|4.73]5.69 |4.39
262.65 | 217.35 | 2455|2782 |229.7|257.8|5.59|5.38|4.77
263.9 21645 | 2453 |276.7 |229.4|258.6 |4.63 |5.65|5.14
10 263.7 216.9 247.1 1 276.5 |228.2]259.2 |4.63 |4.95|4.67
Average | 263.398 | 216.155 | 246.0 | 277.24 | 228.9 | 258.4 | 4.99 | 5.56 | 4.79

OO0 [N Nl B~ W|N|—

Table 4: Comparison of Time Taken between Simulation and Experiment for Navigation
of Multiple NAOs

Simulation Results ‘ Experimental Results
No. of runs Path Travelled in cm
N1 N2 N3 NI N2 N3 NI | N2 | N3
3245 | 27.14 | 314 | 347 | 282 | 336 | 648 |3.76 | 6.55
326 272 |31.5 |348 |292 |336 | 632|685 6.25
32.74 | 2642 | 30.8 | 35.1 | 27.8 | 332 | 6.72|496 | 7.23
31.87 | 26.6 | 30.9 | 33.55|28.6 | 325 | 501|699 |4.92
31.94 | 27.41 | 304 | 33.6 | 287 | 334 |494 | 449 | 8.98
33.19 | 27.53 | 30.1 | 35 294 | 314 | 517 | 6.36 | 4.14
3333 | 26.8 | 30.7 | 349 | 284 |325 |45 |563]|554
31.99 | 284 | 30 3422 1302 | 315 | 652|596 |4.76
33 27.6 297 |352 | 288 | 327 |6.25|4.17 |9.17
10 33.22 | 28 31.7 | 356 |295 |339 | 6.69|508 | 6.49
Average | 32.63 | 27.31 | 30.72 | 34.67 | 28.88 | 32.83 | 5.87 | 5.44 | 6.43

Errors in %

O[O0 I[N B|W|N|+—

It can be observed that the navigational parameters show a higher value in ex-
perimental results as compared to the simulation results. The reason for the same
has already been discussed. The percentage of errors for all the comparisons are
within 7%, which is well under the acceptable limit. From the implementation
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of the proposed RA-APSO navigational controller in humanoid navigation, it
can be observed that the proposed controller is able to navigate single as well as
multiple humanoids in cluttered environments. The results of the navigation ob-
tained from the simulation software are verified with areal time experimental set
up, and both the results are in good agreement with each other with very minimal
percentage of errors.

9. Comparison of the RA-APSO controller with existing navigational controller

From the above sections, it was observed that the proposed RA-APSO nav-
igational controller was successfully implemented in both single and multiple
humanoid robots. The humanoids were perfectly able in avoiding both static as
well as dynamic obstacles and reach their goal position safely. However, to have
a detailed investigation regarding the efficiency of the proposed navigational con-
troller, it is required to compare it with other existing techniques. To do the same,
a Co-Evolutionary Improved Genetic Algorithm (CEGA) and an Improved Ge-
netic Algorithm (IGA) are chosen. CEGA and IGA are heuristic methods as
compared to the regression analysis, which is a statistical method. CEGA and
IGA work on the basis of a predefined objective function while regression anal-
ysis is based on statistical formula and training data. Qu et al. (2013) developed
two methods named as Improved Genetic Algorithm and CEGA. In the current
analysis, navigation of single robot was compared with IGA algorithm and nav-
igation of multiple robots was compared with CEGA algorithm. Figure 13 and
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Figure 13: Simulation result for navigation of single robot using IGA algorithm
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Figure 14 demonstrate a comparison between IGA and proposed technique for
navigation of a single robot. Figure 15 and Figure 16 demonstrate the comparison
between CEGA and proposed navigational controller for navigation of multiple
robots.
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Figure 14: Simulation result for navigation of single robot using RA-APSO controller
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Figure 15: Simulation result for navigation of multiple robots using CEGA approach
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Figure 16: Simulation result for navigation of multiple robots using RA-APSO controller

The navigational parameters such as the path length and time taken are cal-
culated for the respective existing and proposed technique, and a comparison
was done between them. Table 5 and Table 6 represent the comparison for path
length between existing method and proposed method for single and multiple
robot navigation respectively.

Table 5: Comparison of the results obtained from Qu et al. [32] and proposed RA-APSO
navigational controller for navigation of single robot

Technique used Path length in cm Deviation in %
By Qu et al. (2013) (Figure 13) 25.89 711
By RA-APSO Technique (Figure 14) 24.05 '

From the obtained results, it was noticed that the RA-APSO technique has
demonstrated a better path optimization than the existing ones. Hence, it can
serve as a better alternative than the existing techniques. So, the efficiency of
the proposed RA-APSO navigational controller is on an enhanced mode than the
existing methods.
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Table 6: Comparison of the results obtained from Qu et al. [32] and proposed RA-APSO
navigational controller for navigation of multiple robots

Technique used Path length in cm Deviation in %
By Qu et al. (2013) (Figure 15) 28.19 6.88
By RA-APSO Technique (Figure 16) 26.25 '

10. Conclusions

With the ever increasing demand towards industrial automation, path plan-
ning and navigation for robots has emerged as one of the most promising area
of research. The humanoids robots with their flexibility of replacing the human
efforts can be used in several sectors if trained intelligently. In this paper, a novel
navigational approach has been designed for the path planning of humanoid
robots. As the navigation of humanoid robots is a relatively new area of research
in its own kind, hybridization of standalone methods is very rarely available in
the published literatures. In the current investigation, a novel navigational con-
troller has been designed by hybridizing basic regression analysis with adaptive
particle swarm optimization. The proposed controller was tested in both sim-
ulated and experimental environments considering the navigational parameters
of the humanoid robots. The results obtained from both the environments were
compared with each other, and a good agreement between them was found. To
navigate multiple humanoids in a common environment, a Petri-Net controller
was designed and implemented along with the logic of RA-APSO controller.
The controller was tested for single as well as multiple humanoid robots. Fi-
nally, the proposed navigational controller was also tested with the other existing
navigational techniques, and an enhanced performance was observed. Therefore,
the proposed controller can be used as a robust technique for navigation of hu-
manoids as well as other forms of robots. This research would definitely add a
new dimension towards robotics field dealing with navigational analysis.
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